Problems of the Miklós Schweitzer Memorial Competition, 2010.

1. Let p be prime. Denote by $N(p)$ the number of integers x for which $1 \leq x \leq p$ and

$$
x^{x} \equiv 1 \quad(\bmod p)
$$

Prove that there exist numbers $c<1 / 2$ and $p_{0}>0$ such that

$$
N(p) \leq p^{c}
$$

if $p \geq p_{0}$.
2. Let G be a countably infinite, d-regular, connected, vertex-transitive graph. Show that there is a complete pairing in G.
3. Let $A_{i}, i=1,2, \ldots, t$ be distinct subsets of the base set $\{1,2, \ldots, n\}$ complying to the following condition

$$
A_{i} \cap A_{k} \subseteq A_{j}
$$

for any $1 \leq i<j<k \leq t$. Find the maximum value of t.
4. Prove that if $n \geq 2$ and $I_{1}, I_{2}, \ldots, I_{n}$ are prime ideals in a unitary commutative ring such that for any nonempty $H \subseteq\{1,2, \ldots, n\}$ the set $\sum_{h \in H} I_{h}$ is a prime ideal, then

$$
I_{2} I_{3} I_{4} \ldots I_{n}+I_{1} I_{3} I_{4} \ldots I_{n}+\cdots+I_{1} I_{2} \ldots I_{n-1}
$$

is also a prime ideal.
5. Given the vectors v_{1}, \ldots, v_{n} and w_{1}, \ldots, w_{n} in the plane with the following properties: for every $1 \leq i \leq n,\left|v_{i}-w_{i}\right| \leq 1$, and for every $1 \leq i<j \leq n$, $\left|v_{i}-v_{j}\right| \geq 3$ and $v_{i}-w_{i} \neq v_{j}-w_{j}$. Prove that for sets $V=\left\{v_{1}, \ldots, v_{n}\right\}$ and $W=\left\{w_{1}, \ldots, w_{n}\right\}$, the set of $V+(V \cup W)$ must have at least $c n^{3 / 2}$ elements ,for some universal constant $c>0$.
6. Is there a continuous function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ for every $d \in \mathbb{R}$ we have $g_{m, d}(x)=f(x, m x+d)$ is strictly monotonic on \mathbb{R} if $m \geq 0$, and not monotone on any non-empty open interval if $m<0$?
7. Is there any sequence $\left(a_{n}\right)_{n=1}^{\infty}$ of non-negative numbers, for which $\sum_{n=1}^{\infty} a_{n}^{2}<\infty$, but $\sum_{n=1}^{\infty}\left(\sum_{k=1}^{\infty} \frac{a_{k n}}{k}\right)^{2}=\infty$?
8. Let $D \subset \mathbb{R}^{2}$ be a finite Lebesgue measure of a connected open set and $u: D \rightarrow \mathbb{R}$ a harmonic function. Show that it is either a constant u or for almost every $p \in D$

$$
f^{\prime}(t)=(\operatorname{grad} u)(f(t)), \quad f(0)=p
$$

has no initial value problem(differentiable everywhere) solution to f : $[0, \infty) \rightarrow D$.
9. For each M m-dimensional closed C^{∞} set, assign a $G(m)$ in some euclidean space \mathbb{R}^{q}. Denote by $\mathbb{R P}^{q}$ a q-dimensional real projecive space. $\mathrm{A} G(M) \subseteq \times \mathbb{R}^{q}$. The set consists of (x, e) pairs for which $x \in M \subseteq \mathbb{P}^{q}$ and $e \subseteq \mathbb{R}^{q+1}=\mathbb{R}^{q} \times \mathbb{R}$ and $\mathrm{a}(0, \ldots, 0,1) \in \mathbb{R}^{q+1}$ in a stretched $(m+1)$ dimensional linear subspace. Prove that if N is a n-dimensional closed set C^{∞}, then $P=G(M \times M)$ and $Q=G(M) \times G(N)$ are cobordant, that is,
there exists a $(2 m+2 n+1)$-dimensional compact, flanged set C^{∞} with a disjoint union of P and Q.
10. Consider the space $\{0,1\}^{N}$ with the product topology (where $\{0,1\}$ is a discrete space). Let $T:\{0,1\}^{\mathbb{N}} \rightarrow\{0,1\}^{\mathbb{N}}$ be the left-shift, ie $(T x)(n)=$ $x(n+1)$ for every $n \in \mathbb{N}$. Can a finite number of Borel sets be given: $B_{1}, \ldots, B_{m} \subset\{0,1\}^{N}$ such that

$$
\left\{T^{i}\left(B_{j}\right) \mid i \in \mathbb{N}, 1 \leq j \leq m\right\}
$$

the σ-algebra generated by the set system coincides with the Borel set system?
11. (Not yet translated.)

