Problems of the Miklós Schweitzer Memorial Competition, 2008.

1. Let $\mathcal{H} \subset P(X)$ be a system of subsets of X and $\kappa>0$ be a cardinal number such that every $x \in X$ is contained in less than κ members of \mathcal{H}. Prove, that there exists an $f: X \rightarrow \kappa$ coloring, such that every nonempty $A \in \mathcal{H}$ has a "unique" point, that is, an element $x \in A$ such that $f(x) \neq f(y)$ for all $x \neq y \in A$.
2. Let $t \geq 3$ be an integer, and for $1 \leq i<j \leq t$ let $A_{i j}=A_{j i}$ be an arbitrary subset of an n-element set X. Prove, that there exist $1 \leq i<j \leq t$ for which

$$
\left|\left(X \backslash A_{i j}\right) \cup \bigcup_{k \neq i, j}\left(A_{i k} \cap A_{j k}\right)\right| \geq \frac{t-2}{2 t-2} n .
$$

3. A bipartite graph on the sets $\left\{x_{1}, \ldots, x_{n}\right\}$ and $\left\{y_{1}, \ldots, y_{n}\right\}$ of vertices (that is the edges are of the form $x_{i} y_{j}$) is called tame if it has no $x_{i} y_{j} x_{k} y_{\ell}$ path $(i, j, k, \ell \in\{1, \ldots, n\})$ where $j<\ell$ and $i+j>k+\ell$. Calculate the infimum of those real numbers α for which there exists a constant $c=c(\alpha)>0$ such that for all tame graphs $e \leq c \cdot n^{\alpha}$, where e is the number of edges and n is half of the number of vertices.
4. Let A be a subgroup of the symmetric group S_{n}, and G be a normal subgroup of A. Show, that if G is transitive, then $|A: G| \leq 5^{n-1}$.
5. Let A be an infinite subset of the set of natural numbers, and denote by $\tau_{A}(n)$ the number of divisors of n in A. Construct a set A for which

$$
\sum_{n \leq x} \tau_{A}(n)=x+O(\log \log x)
$$

and show that there is no set for which the error term is $o(\log \log x)$ in the above formula.
6. Can you draw circles on the plane so that every line intersects at least one of them but no more than 100 of them?
7. Let $f: \mathbb{R}^{1} \rightarrow \mathbb{R}^{2}$ be a continuous function such that $f(x)=f(x+1)$ for all x, and let $t \in[0,1 / 4]$. Prove, that there exists $x \in \mathbb{R}$, such that the vector from $f(x-t)$ to $f(x+t)$ is perpendicular to the vector from $f(x)$ to $f(x+1 / 2)$.

8. Let S be the above Sierpinski triangle. What can we say about the Hausdorff dimension of the elevation sets $f^{-1}(y)$ for typical continuous real functions defined on S ? (A property is satisfied for typical continuous real functions on S if the set of functions not having this property is of the first Baire category in the metric space of continuous $S \rightarrow \mathbb{R}$ functions with the supremum norm.)
9. For a given $\alpha>0$ let us consider the regular, non-vanishing $f(z)$ maps on the unit disc $\{|z|<1\}$ for which $f(0)=1$ and $\Re z \frac{f^{\prime}(z)}{f(z)}>-\alpha$ $(|z|<1)$. Show that the range of

$$
g(z)=\frac{1}{(1-z)^{2 \alpha}}
$$

contains the range of all other such functions. Here we consider that regular branch of $g(z)$ for which $g(0)=1$.
10. Let V be the set of non-collinear pairs of vectors in \mathbb{R}^{3}, and H be the set of lines passing through the origin. Is it true that for every continuous map $f: V \rightarrow H$ there exists a continuous map $g: V \rightarrow$ $\mathbb{R}^{3} \backslash\{0\}$ such that $g(v) \in f(v)$ for all $v \in V$?
11. Let ξ_{1}, \ldots, ξ_{n} be (not necessarily independent) random variables with normal distribution for which $E \xi_{j}=0$ and $E \xi_{j}^{2} \leq 1$ for all $1 \leq$ $j \leq n$. Prove, that

$$
E\left(\max _{1 \leq j \leq n} \xi_{j}\right) \leq \sqrt{2 \log n} .
$$

