Problems of the Miklós Schweitzer Memorial Competition, 2007.

1. Prove, that there exist subfields of \mathbf{R} that are
a) non-measurable, and
b) of measure zero and continuum cardinality.
2. We partition the n-element subsets of an $n^{2}+n+1$-element set into two classes. Prove, that one of the classes contains n-many pairwise disjunct sets.
3. Denote by $\omega(n)$ the number of prime divisors of the natural number n (without multiplicities). Let

$$
F(x)=\max _{n \leq x} \omega(n), \quad G(x)=\max _{n \leq x}\left(\omega(n)+\omega\left(n^{2}+1\right)\right) .
$$

Prove, that $G(x)-F(x) \rightarrow \infty$ as $x \rightarrow \infty$.
4. Let p be a prime number, and a_{1}, \ldots, a_{p-1} be not necessarily distinct nonzero elements of the p-element $\mathbf{Z}_{p}(\bmod p)$ group. Prove, that each element of \mathbf{Z}_{p} equals a sum of some of the a_{i} 's (the empty sum is 0).
5. Let $D=\{(x, y) \mid x>0, y \neq 0\}$, and let $u \in C^{1}(\bar{D})$ be a bounded function that is harmonic on D and for which $u=0$ on the y-axis. Prove, that u is identically zero.
6. For which subsets $A \subset \mathbf{R}$ is it true, that whenever $0 \leq x_{0}<x_{1}<$ $\cdots<x_{n} \leq 1, n=1,2, \ldots$, then there exist $y_{j} \in A$ numbers, such that $y_{j+1}-y_{j}>x_{j+1}-x_{j}$ for all $0 \leq j<n$.
7. Prove, that there exist natural numbers $n_{k}, m_{k}, k=0,1,2, \ldots$, such that the numbers $n_{k}+m_{k}, k=1,2, \ldots$ are pairwise distinct primes, and the set of linear combination of the polynomials $x^{n_{k}} y^{m_{k}}$ is dense in $C([0,1] \times[0,1])$ under the supremum norm.
8. For an $A=\left\{a_{i}\right\}_{i=0}^{\infty}$ sequence let $S A=\left\{a_{0}, a_{0}+a_{1}, a_{0}+a_{1}+a_{2}, \ldots\right\}$ be the sequence of partial sums of the $a_{0}+a_{1}+a_{2}+\ldots$ series. Does there exist a non-identically zero sequence A such that all of the sequences $A, S A, S S A, S S S A, \ldots$ are convergent?
9. Let A and B be two triangles on the plane, such that the interior of both contains the origin, and for each circle C_{r} centered at the origin $\left|C_{r} \cap A\right|=\left|C_{r} \cap B\right|$ (where $|\cdot|$ is the arc-length measure). Prove, that A and B are congruent. Does this statement remain true if the origin is on the border of A or B ?
10. Let $\zeta_{1}, \zeta_{2}, \ldots$ be identically distributed, independent real-valued random variables with expected value 0 . Suppose that the $\Lambda(\lambda):=$ $\log \mathbb{E} \exp \left(\lambda \zeta_{i}\right)$ logarithmic moment-generating function always exists for $\lambda \in \mathbb{R}(\mathbb{E}$ is the expected value). Furthermore, let $G: \mathbb{R} \rightarrow \mathbb{R}$ be a
function such that $G(x) \leq \min \left(|x|, x^{2}\right)$. Prove that for small $\gamma>0$ the following sequence is bounded:

$$
\left\{\mathbb{E} \exp \left(\gamma l G\left(\frac{1}{l}\left(\zeta_{1}+\ldots+\zeta_{l}\right)\right)\right)\right\}_{l=1}^{\infty}
$$

