Problems of the Miklós Schweitzer Memorial Competition, 2007.

1. Prove, that there exist subfields of **R** that are

- a) non-measurable, and
- b) of measure zero and continuum cardinality.

2. We partition the *n*-element subsets of an $n^2 + n + 1$ -element set into two classes. Prove, that one of the classes contains *n*-many pairwise disjunct sets.

3. Denote by $\omega(n)$ the number of prime divisors of the natural number n (without multiplicities). Let

$$F(x) = \max_{n \le x} \omega(n), \qquad G(x) = \max_{n \le x} \left(\omega(n) + \omega(n^2 + 1) \right).$$

Prove, that $G(x) - F(x) \to \infty$ as $x \to \infty$.

4. Let p be a prime number, and a_1, \ldots, a_{p-1} be not necessarily distinct nonzero elements of the p-element $\mathbf{Z}_p \pmod{p}$ group. Prove, that each element of \mathbf{Z}_p equals a sum of some of the a_i 's (the empty sum is 0).

5. Let $D = \{ (x, y) \mid x > 0, y \neq 0 \}$, and let $u \in C^1(\overline{D})$ be a bounded function that is harmonic on D and for which u = 0 on the *y*-axis. Prove, that u is identically zero.

6. For which subsets $A \subset \mathbf{R}$ is it true, that whenever $0 \leq x_0 < x_1 < \cdots < x_n \leq 1, n = 1, 2, \ldots$, then there exist $y_j \in A$ numbers, such that $y_{j+1} - y_j > x_{j+1} - x_j$ for all $0 \leq j < n$.

7. Prove, that there exist natural numbers n_k , m_k , k = 0, 1, 2, ..., such that the numbers $n_k + m_k$, k = 1, 2, ... are pairwise distinct primes, and the set of linear combination of the polynomials $x^{n_k}y^{m_k}$ is dense in $C([0, 1] \times [0, 1])$ under the supremum norm.

8. For an $A = \{a_i\}_{i=0}^{\infty}$ sequence let $SA = \{a_0, a_0 + a_1, a_0 + a_1 + a_2, ...\}$ be the sequence of partial sums of the $a_0 + a_1 + a_2 + ...$ series. Does there exist a non-identically zero sequence A such that all of the sequences A, SA, SSA, SSSA, ... are convergent?

9. Let A and B be two triangles on the plane, such that the interior of both contains the origin, and for each circle C_r centered at the origin $|C_r \cap A| = |C_r \cap B|$ (where $|\cdot|$ is the arc-length measure). Prove, that A and B are congruent. Does this statement remain true if the origin is on the border of A or B?

10. Let ζ_1, ζ_2, \ldots be identically distributed, independent real-valued random variables with expected value 0. Suppose that the $\Lambda(\lambda) := \log \mathbb{E} \exp(\lambda \zeta_i)$ logarithmic moment-generating function always exists for $\lambda \in \mathbb{R}$ (\mathbb{E} is the expected value). Furthermore, let $G \colon \mathbb{R} \to \mathbb{R}$ be a function such that $G(x) \leq \min(|x|, x^2)$. Prove that for small $\gamma > 0$ the following sequence is bounded:

$$\left\{\mathbb{E}\exp\left(\gamma lG\left(\frac{1}{l}(\zeta_1+\ldots+\zeta_l)\right)\right)\right\}_{l=1}^{\infty}.$$

Unofficial translation by Miklós Maróti