PROBLEMS

1. Let $(X,<)$ be an arbitrary ordered set. Show that the elements of X can be colored by two colors in such a way that between any two points of the same color there is a point of the opposite color.
2. Let p be a prime and let M be an $n \times m$ matrix with integer entries such that $M v \not \equiv 0(\bmod p)$ for any column vector $v \neq 0$ whose entries are 0 or 1 . Show that there exists a row vector x with integer entries such that no entry of $x M$ is $0(\bmod p)$.
3. Let $Z=\left\{z_{1}, \ldots, z_{n-1}\right\}, n \geq 2$, be a set of different complex numbers such that Z contains the conjugate of any its element.
a) Show that there exists a constant C, depending on Z, such that for any $\varepsilon \in(0,1)$ there exists an algebraic integer x_{0} of degree n, whose algebraic conjugates $x_{1}, x_{2}, \ldots, x_{n-1}$ satisfy $\left|x_{1}-z_{1}\right| \leq \varepsilon, \ldots,\left|x_{n-1}-z_{n-1}\right| \leq \varepsilon$ and $\left|x_{0}\right| \leq C / \varepsilon$.
b) Show that there exists a set $Z=\left\{z_{1}, \ldots, z_{n-1}\right\}$ and a positive number c_{n} such that for any algebraic integer x_{0} of degree n, whose algebraic conjugates satisfy $\left|x_{1}-z_{1}\right| \leq \varepsilon, \ldots,\left|x_{n-1}-z_{n-1}\right| \leq \varepsilon$, it also holds that $\left|x_{0}\right|>c_{n} / \varepsilon$.
4. Let $\left\{a_{n, 1}, \ldots, a_{n, n}\right\}_{n=1}^{\infty}$ integers such that $a_{n, i} \neq a_{n, j}$ for $1 \leq i<$ $j \leq n, n=2,3, \ldots$ and let $\langle y\rangle \in[0,1)$ denote the fractional part of the real number y. Show that there exists a real sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ such that the numbers $\left\langle a_{n, 1} x_{n}\right\rangle, \ldots,\left\langle a_{n, n} x_{n}\right\rangle$ are asymptotically uniformly distributed on the interval $[0,1]$.
5. Let $d>1$ be integer and $0<r<1 / 2$. Show that there exist finitely many (depending only on d, r) nonzero vectors in \mathbf{R}^{d} such that if the distance of a straight line in \mathbf{R}^{d} from the integer lattice \mathbf{Z}^{d} is at least r, then this line is orthogonal to one of these finitely many vectors.
6. Show that the recursion $n=x_{n}\left(x_{n-1}+x_{n}+x_{n+1}\right), n=1,2, \ldots$, $x_{0}=0$ has exactly one nonnegative solution.
7. Let r be a nonnegative continuous function on the real line. Show that there exists a function $f \in C^{1}(\mathbf{R})$, not identically zero, such that $f^{\prime}(x)=f(x-r(f(x))), x \in \mathbf{R}$.
8. Let f_{1}, f_{2}, \ldots be continuous real functions on the real line. Is it true that if the series $\sum_{n=1}^{\infty} f_{n}(x)$ is divergent for every x, then this holds also true for any typical choice of the signs in the sum (i.e. the set of those $\left\{\epsilon_{n}\right\}_{n=1}^{\infty} \in\{+1,-1\}^{\mathbf{N}}$ sequences, for which the series $\sum_{n=1}^{\infty} \epsilon_{n} f_{n}(x)$ is convergent at least at one point x, forms a subset of first category within the set $\left.\{+1,-1\}^{\mathbf{N}}\right)$?
9. Given finitely many open half planes on the Euclidean plane. The boundary lines of these half planes divide the plane into convex domains. Find a polynomial $C(q)$ of degree two so that the following holds: for any $q \geq 1$ integer, if the half planes cover each point of the plane at least q times, then the set of points covered exactly q times is the union of at most $C(q)$ domains.
10. Let X and Y be independent random variables with "Saint-Petersburg" distribution, i.e. for any $k=1,2, \ldots$ their value is 2^{k} with probability $1 / 2^{k}$. Show that X and Y can be realized on a sufficiently big probability space such that there exists another pair of independent "Saint-Petersburg" random variables $\left(X^{\prime}, Y^{\prime}\right)$ on this space with the property that $X+Y=$ $2 X^{\prime}+Y^{\prime} I\left(Y^{\prime} \leq X^{\prime}\right)$ almost surely (here $I(A)$ denotes the indicator function of the event A).

Szeged, Hungary, October 31, 2003

Unofficial translation by L. Erdős

