Problems of the Miklós Schweitzer Memorial Competition November 8-18, 2002

1. For an arbitrary ordinal number α let $H(\alpha)$ denote the set of functions f : $\alpha \rightarrow\{-1,0,1\}$ that map all but finitely many elements of α to 0 . Order $H(\alpha)$ according to the last difference, that is, for $f, g \in H(\alpha)$ let $f \prec g$ if $f(\beta)<g(\beta)$ holds for the maximum ordinal number $\beta<\alpha$ with $f(\beta) \neq g(\beta)$. Prove that the ordered set $(H(\alpha), \prec)$ is scattered (i.e. it does not contain a subset isomorphic to the set of rational numbers with the usual order), and that any scattered order type can be embedded into some ($H(\alpha), \prec)$.
2. Let G be a simple k-edge-connected graph on n vertices and let u and v be different vertices of G. Prove that there exist k edge-disjoint paths from u to v each having at most $\frac{20 n}{k}$ edges.
3. Put $\mathbf{A}=\{$ yes, no $\}$. A function $f: \mathbf{A}^{n} \rightarrow \mathbf{A}$ is called a decision function if
(a) the value of the function changes if we change all of its arguments; and
(b) the value does not change if we replace any of the arguments by the function value.

A function $d: \mathbf{A}^{n} \rightarrow \mathbf{A}$ is called a dictatoric function, if there is an index i such that the value of the function equals its i th argument.

The democratic function is the function $m: \mathbf{A}^{3} \rightarrow \mathbf{A}$ that outputs the majority of its arguments.

Prove that any decision function is a composition of dictatoric and democratic functions.
4. For a given natural number n, consider those sets $A \subseteq \mathbb{Z}_{n}$ for which the equation $x y=u v$ has no other solution in the residual classes $x, y, u, v \in A$ than the trivial solutions $x=u, y=v$ and $x=v, y=u$. Let $g(n)$ be the maximum of the size of such sets A. Prove that

$$
\limsup _{n \rightarrow \infty} \frac{g(n)}{\sqrt{n}}=1
$$

5. Denote by $\lambda(H)$ the Lebesgue outer measure of $H \subseteq[0,1]$. The horizontal and vertical sections of the set $A \subseteq[0,1] \times[0,1]$ are denoted by A^{y} and A_{x} respectively; that is, $A^{y}=\{x \in[0,1]:(x, y) \in A\}$ and $A_{x}=\{y \in[0,1]:$ $(x, y) \in A\}$ for all $x, y \in[0,1]$.
(a) Is there a decomposition $A \cup B$ of the unit square $[0,1] \times[0,1]$ such that A^{y} is the union of finitely many segments of total length less than $1 / 2$ and $\lambda\left(B_{x}\right) \leq 1 / 2$ for all $x, y \in[0,1]$?
(b) Is there a decomposition $A \cup B$ of the unit square $[0,1] \times[0,1]$ such that A^{y} is the union of finitely many segments of total length not greater than $1 / 2$ and $\lambda\left(B_{x}\right)<1 / 2$ for all $x, y \in[0,1]$?
6. Let $K \subseteq \mathbb{R}$ be compact. Prove that the following two statements are equivalent to each other.
(a) For each point x of K we can assign an uncountable set $F_{x} \subseteq \mathbb{R}$ such that

$$
\operatorname{dist}\left(F_{x}, F_{y}\right) \geq|x-y|
$$

holds for all $x, y \in K$;
(b) K is of measure zero.
7. Let the complex function $F(z)$ be regular on the punctuated disk $\{0<|z|<R\}$. By a level curve we mean a component of the level set of $\operatorname{Re} F(z)$, that is, a maximal connected set on which $\operatorname{Re} F(z)$ is constant. Denote by $A(r)$ the union of those level curves that are entirely contained in the punctuated disk $\{0<|z|<r\}$. Prove that if the number of components of $A(r)$ has an upper bound independent of r then $F(z)$ can only have a pole type singularity at 0 .
8. Prove that there exists an absolute constant c such that any set H of n points of the plane in general position can be coloured with $c \cdot \log n$ colours in such a way that any disk of the plane containing at least one point of H intersects some colour class of H in exactly one point.
9. Let M be a connected, compact C^{∞}-differentiable manifold, and dentote the vector space of smooth real functions on M by $C^{\infty}(M)$. Let the subspace $V \leq$ $C^{\infty}(M)$ be invariant under C^{∞}-diffeomorphisms of M, that is, let $f \circ h \in V$ for every $f \in V$ and for every C^{∞}-diffeomorphism $h: M \rightarrow M$. Prove that if V is different from the subspaces $\{0\}$ and $C^{\infty}(M)$ then V only contains the constant functions.
10. Let X_{1}, X_{2}, \ldots be independent random variables of the same distribution such that their joint distribution is discrete and is concentrated on infinitely many different values. Let a_{n} denote the probability that X_{1}, \ldots, X_{n+1} are all different on the condition that X_{1}, \ldots, X_{n} are all different ($n \geq 1$). Show that
(a) a_{n} is strictly decreasing and tends to 0 as $n \rightarrow \infty$; and
(b) for any sequence $1 \leq f(1)<f(2)<\ldots$ of positive integers the joint distribution of X_{1}, X_{2}, \ldots can be chosen such that

$$
\limsup _{n \rightarrow \infty} \frac{a_{f(n)}}{a_{n}}=1
$$

holds.

The deadline for submitting solutions to the problems is November the 18th, 2002./ 12h (CET). If the participant uses some knowledge that is not contained in the standard curriculum, then (s)he should cite the exact source. For further information see the homepage http://www.cs.elte.hu/~schw02.

