Problems of the Miklós Schweitzer Memorial Competition, 2001.

1. Let $f: 2^{S} \rightarrow \mathbb{R}$ be a function defined on the subsets of a finite set S. Prove that if $f(A)=f(S \backslash A)$ and $\max \{f(A), f(B)\} \geq f(A \cup B)$ for all subsets A, B of S, then f assumes at most $|S|$ distinct values.
2. Let $\alpha \leq-2$ be an integer. Prove that for every pair β_{0}, β_{1} of integers there exists a uniquely determined sequence $0 \leq q_{0}, \ldots, q_{k}<\alpha^{2}-\alpha$ of integers, such that $q_{k} \neq 0$ if $\left(\beta_{0}, \beta_{1}\right) \neq(0,0)$ and

$$
\beta_{i}=\sum_{j=0}^{k} q_{j}(\alpha-i)^{j}, \text { for } i=0,1 .
$$

3. How many minimal left ideals does the full matrix ring $M_{n}(K)$ of $n \times n$ matricies over a field K have?
4. Find the units of $R=\mathbb{Z}[t]\left[\sqrt{t^{2}-1}\right]$.
5. Prove that if the function f is defined on the set of positive real numbers, its values are real, and f satisfies the equation

$$
f\left(\frac{x+y}{2}\right)+f\left(\frac{2 x y}{x+y}\right)=f(x)+f(y)
$$

for all positive x, y, then

$$
2 f(\sqrt{x y})=f(x)+f(y)
$$

for every pair x, y of positive numbers.
6. Let $I \subset \mathbb{R}$ be a nonempty open interval, $\varepsilon \geq 0$ and $f: I \rightarrow \mathbb{R}$ a function satisfying the

$$
f(t x+(1-t) y) \leq t f(x)+(1-t) f(y)+\varepsilon t(1-t)|x-y|
$$

inequality for all $x, y \in I$ and $t \in[0,1]$. Prove that there exists a convex $g: I \rightarrow \mathbb{R}$ function, such that the function $\ell:=f-g$ has the ε-Lipschitz property, that is

$$
|\ell(x)-\ell(y)| \leq \varepsilon|x-y| \quad \text { for all } x, y \in I .
$$

7. Let e_{1}, \ldots, e_{n} be semilines on the plane starting from a common point. Prove, that if there is no $u \not \equiv 0$ harmonic function on the whole plane that vanishes on the set $e_{1} \cup \cdots \cup e_{n}$, then there exists a pair i, j of indices such that no $u \not \equiv 0$ harmonic function on the whole plane exists that vanishes on $e_{i} \cup e_{j}$.
8. Let H be a complex Hilbert space. The bounded linear operator A is called positive, if $\langle A x, x\rangle \geq 0$ for all $x \in H$. Let \sqrt{A} be the positive square root of A, i.e. the uniquelly determined positive operator satisfying $(\sqrt{A})^{2}=A$. On the set of positive operators we introduce the

$$
A \circ B=\sqrt{A} B \sqrt{B}
$$

operation. Prove, that for a given pair A, B of positive operators the identity

$$
(A \circ B) \circ C=A \circ(B \circ C)
$$

holds for all positive operator C if and only if $A B=B A$.
9. Let H be the hyperbolic plane, $I(H)$ be the isometry group of H, and $O \in H$ be a fixed starting point. Determine those continuous $\sigma: H \rightarrow I(H)$ mappings, that satisfy the following three conditions:
(a) $\sigma(O)=$ id, and $\sigma(X) O=X$ for all $X \in H$;
(b) for every $X \in H \backslash\{O\}$ point, the $\sigma(X)$ isometry is a paracyclic shift, i.e. every member of a system of paracycles through a common infinitely far point is left invariant.
(c) for any pair $P, Q \in H$ of points there exists a point $X \in H$ such that $\sigma(X) P=Q$.

Prove, that the $\sigma: H \rightarrow I(H)$ mappings satisfying the above conditions are differentiable with the exception of a point.
10. (not yet translated)
11. (not yet translated)

