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Fig. 1. The sensor network based shooter localization system using shockwave and muzzle blast
time of arrival data.

1. INTRODUCTION

Experiences from recent military conflicts clearly indicate that the armies of
developed countries will increasingly face asymmetric warfare in the future.
Countering this new threat will have to include the expansion of the tech-
nological advantage that modern armies already have. One example where
technology plays an important role is countersniper systems, which can be
extremely useful in urban guerilla warfare. However, current systems do not
work well in urban areas because of the reverberant environment. Nor are
they able to distinguish multiple simultaneous shots that are very common
in firefights. A sensor network-based solution, however, can address both of
these problems because of its widely distributed geographically diverse sensing
capability.

Countersniper systems can use several different physical phenomena related
to the shot or the weapon itself, such as acoustic, visual, or electromagnetic sig-
nals. A detectable visual event is the muzzle flash, as in case of the Viper system
[Moroz et al. 1999], or the reflection from the sniper’s scope [Vick et al. 2000].
The electromagnetic field or heat generated by the projectile can also be used
for detection [Vick et al. 2000]. In spite of the wide range of possibilities, so far
acoustic signals, such as the muzzle blast and the ballistic shockwave, provide
the easiest and most accurate way to detect shots, and hence, the majority of
existing countersniper systems use them as the primary information source
[Duckworth et al. 1996; Pilar Systems; Stoughton 1997].

The most obvious acoustic event generated by the firing of any conventional
weapon is the muzzle blast. The blast is a loud, characteristic noise originating
from the end of the muzzle, and propagating spherically away at the speed of
sound, making it ideal for localization purposes (see Figure 1). A less favor-
able property of the blast is that it can be suppressed by silencers or rendered
ambiguous by acoustic propagation effects.
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Typical rifles fire projectiles at supersonic velocities to increase both the
range and accuracy, producing acoustic shocks along their trajectory. The shock-
wave is the result of the air being greatly compressed at the tip, and expanded
at the end of the bullet, as it slices through the air. Under ideal circumstances
the pressure signal detected by a microphone has a characteristic and distinc-
tive waveform, called N-wave referring to its shape. Because of its very fast
rise time (<1 µs), it cannot be produced by any other natural phenomenon. The
ideal shockwave front is a cone (the Mach cone) moving along the trajectory of
the projectile. The angle of the cone depends on the speed of the bullet. Note
that this angle is continuously increasing as the bullet decelerates producing
a distorted conical shape, as shown in Figure 1. Since N-waves can be accu-
rately detected, shockwaves provide excellent means to determine projectile
trajectories.

Existing commercial systems use a small number of microphone arrays (typi-
cally 1–3) to determine the projectile trajectory and/or the location of the shooter
[Duckworth et al. 1996; Pilar Systems]. This centralized approach permits the
use of practically any sophisticated signal processing algorithms working on
the recorded acoustic signals of multiple microphones. On the other hand, the
small number of sensor units limits the covered area and also makes the system
sensitive to multipath effects and vulnerable to attacks. The proposed sensor
networking approach allows the use of possibly several orders of magnitude
higher number of inexpensive sensor units, but requires quite different pro-
cessing approach because of the very limited communication bandwidth. Some
of the processing must be allocated to the sensor units, while the sensor fu-
sion needs to be carried out on a more powerful computer. The new technology
presented in this article resulted in a robust, inexpensive, and highly accurate
system, with some unique properties not available in any other systems, such
as high insensitivity to multipath effects and the ability of handling multiple
simultaneous shots. The concept is illustrated in Figure 1. The sensors accu-
rately detect shockwave and/or muzzle blast events and measure their time
of arrival (TOA). These timestamps of detected events are sent to a central
base station, where the fusion algorithm calculates the shot trajectory and/or
the shooter location, based on the TOA measurements and the known sensor
locations. The communication in the network is provided by ad hoc routing
protocols, incorporating the time synchronization service as well.

Muzzle blast and shockwave detections carry information about the shooter
location, and the projectile trajectory, respectively. Either type of events or both
combined can be used for localization purposes. The muzzle blast fusion algo-
rithm works very well when the shooter is located within the sensor field and
there are enough (at least 8–10) line-of-sight measurements. Once the shooter is
shooting outside of the sensor field, the accuracy starts to decrease. One reason
is that the angle of the sensor field from the shooter (“field of view”) is getting
smaller and hence, individual measurement errors have larger effects on the
result. The other reason is that, as the distance to the shooter increases, fewer
and fewer sensors are able to detect the muzzle blast at all. Once the shooter
is beyond 50 meters or so, muzzle blast alone is typically not enough to make
accurate localization.
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Fig. 2. The FPGA-based acoustic sensor board.

Shockwave fusion alone cannot determine the exact location of the shooter,
but provides the trajectory of the bullet, even for long-range shots. The sensor
network is presumably deployed in and around the protected area, and as long
as the bullet goes through this region, the sensors can detect shockwave events,
independently of the distance from the shooter. Naturally, shockwave trajectory
estimation and muzzle blast ranging can be combined to provide accurate lo-
calization, if at least a few muzzle blast detections are available.

The outline of this article is as follows. The hardware and software architec-
ture of the system is presented in Section 2. The shot detection component is
described in Section 3. The routing integrated time synchronization is presented
in Section 4. Fusion techniques (muzzle blast, shockwave, and combined) are
presented in Section 5. The system is evaluated using field test measurements
in Section 6.

2. ARCHITECTURE

2.1 Hardware Platform

The hardware platform is built upon the UC Berkeley MICA2 mote device run-
ning the TinyOS embedded operating system [Hill and Culler 2002], a widely
used component-based architecture targeting wireless sensor network applica-
tions. Open interfaces at the software and hardware levels made it possible to
integrate specialized smart sensor elements and supporting middleware ser-
vices. Each MICA2 mote is furnished with an ATmega 128L 8-bit microcon-
troller with 128 kBytes instruction memory, 4 kBytes data memory and typical
embedded peripherals built in. The on-board radio transceiver operates in the
433 MHz ISM band and has a maximum transfer rate of 38.4 kbits/sec with the
maximum range of about 300 feet [XBOW].

Real-time detection, classification and correlation of acoustic events require
processing power and buffer sizes not present in standard microcontroller-based
embedded devices. To overcome these limitations, application-specific sensor
boards have been designed and built at Vanderbilt University. The different
architectures reflect the current dilemma faced by many signal processing en-
gineers today.

The first version of the sensor board (see Figure 2) utilizes a Xilinx XC2S100
FPGA chip with three independent analog channels exploiting the inherent par-
allelism of the hardware. The algorithms–implemented in VHDL–are focusing

ACM Transactions on Sensor Networks, Vol. 1, No. 2, November 2005.



Countersniper System for Urban Warfare • 157

Fig. 3. The DSP-based acoustic sensor board.

on precise time domain analysis of acoustic signals captured at high sample
rates (1 MSPS). Hardware and software interfaces (I2C bus, interrupts, led
display and serial A/D) are implemented as custom IP cores in the same gate
array. While this approach offers very appealing features, that is, high accuracy
(note that on-board angle of arrival estimate is possible), high speed (though
not fully utilized for audio purposes), and efficient resource utilization, the size
of the FPGA component severely constrains the complexity of the applicable al-
gorithms. Suboptimal power consumption of the processing unit and the lack of
effective power management modes are other handicaps in the sensor network
domain.

To overcome these limitations, another sensor board has been developed,
where customized analog signal paths and an energy-efficient, powerful DSP
processor make the unit uniquely suitable for power constrained applications.
At the heart of the second platform (Figure 3) is a low-power fixed point ADSP-
218x digital signal processor running at 50MHz. Its internal program (48KB)
and data (56KB) memory buffers with advanced addressing modes and DMA
controllers enable sophisticated signal processing and advanced power man-
agement methods.

Two independent analog input channels with low-cost electret microphones
pick up the incoming acoustic signals utilizing 2-stage amplification with soft-
ware programmable gain (0–54 dB). The A/D converters sample at up to
100 kSPS at 12-bit resolution. Analog comparators with software adjustable
thresholds can be used to wake up the signal processor from low-power sleep
mode, enabling continuous deployment for weeks on two AA batteries.

The FPGA and the DSP boards running the detection algorithms continu-
ously draw 30 and 31 mA, respectively. In the power saving mode on the DSP
board, this number drops to 1–5 mA, depending on the sleep mode. For com-
parison, the Mica2 mote draws 15 mA on average running the countersniper
application.

2.2 Software Architecture

As the system evolved, different versions of the system architecture were de-
scribed in detail in Simon et al. [2004] and Lédeczi et al. [2005]. Here, we present
a summary of the latest software architecture (Figure 4). The Muzzle Blast and
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Fig. 4. The software architecture of the system.

Shockwave Detectors are implemented in VHDL on the FPGA of the first gen-
eration sensor board and in C on the DSP board (for details on detection refer
to Section 3). The TOA data from either board is sent through the I2C interface
to the mote. A separate software component translates the time from the clock
of the sensor board to that of the mote. The Acoustic Event Encoder assembles
a packet containing the TOA data and passes it to the Message Routing service.

In addition to transporting the packets to the base station through multiple
hops, the Message Routing service also performs implicit time synchronization
(see Section 4). Additional software components running on the mote include
a Remote Control service enabling the configuration/polling of a single node, a
group of or all of the nodes from the base station. A Stack Monitor makes sure
that the limited memory of the mote is not exhausted.

The Base Station runs the Sensor Fusion algorithm utilizing the known
sensor positions and displays the results on the User Interface. The accuracy
and/or range of existing sensor self-localization methods (including our own
[Sallai et al. 2004]) are not satisfactory for the shooter localization application.
Hence, up-till-now all tests of the system were performed utilizing hand-placed
motes on surveyed points. Future systems will use localization based on our
accurate radio interferometric geolocation technique [Maróti et al. 2005].

3. DETECTION

A block diagram of the signal processing algorithm is shown in Figure 5. The in-
coming raw acoustic signal is compressed using zero-crossing (ZC) coding. The
coded signals are used to detect possible occurrences of shockwave and muzzle
blast patterns by the Shockwave Detection (SWD) and Muzzle Blast Detection
(MBD) blocks, respectively. Although the operation of the two detection blocks
is mainly independent, the SWD block can provide information (time of arrival
of the detected shockwave) for the MBD block to facilitate the detection of a
muzzle blast after a shockwave. Both blocks measure the TOA of the detected
acoustic event using the on-board clock and then notify the mote. The Mica2
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Fig. 5. Block diagram of the signal processing algorithm. The raw sampled signal is compressed
and coded in the Zero-Crossing (ZC) Coder. The Shock Wave Detector (SWD) utilizes the ZC-coded
signal, while the Muzzle Blast Detector (MBD) uses a filtered version. The detectors can commu-
nicate with the mote through an I2C interface.

Fig. 6. Zero crossing coding of the audio signal. Thin solid line shows the original signal, dashed
lines are comparison values, and thick solid line represents the coded signal. In addition to the
starting time (T ), amplitude (Mm), length (L), and the rise time (τ ) shown on the plot, the ZC code
also contains the previous average amplitude (P ) values.

mote reads the measurement data (TOA and optionally signal characteristics)
and performs time synchronization between its own clock and that of the acous-
tic board. The measurement data is then propagated back to the base station
using middleware services of the sensor network.

The zero-crossing coding is illustrated in Figure 6. Using a comparator with
a deadband around zero, the intervals between zero-crossings are coded by stor-
ing the start time of the interval (T ), length of the interval (L), the minimum
or maximum signal value (Mm), the previous signal average amplitude (P )
and the rise time (τ ) of the signal. The SWD block utilizes the ZC-code stream
to detect occurrences of shockwaves, while the MBD uses a filtered version of
the same data-stream to find muzzle blast patterns. The ZC-filter block per-
forms a nonlinear prefiltering operation, implemented very efficiently in the
ZC-domain, to aid the muzzle blast detection.

Both shockwave and muzzle blast events are individually modeled by state
machines, where states represent warped time and the transitions are governed
by ZC properties [Simon et al. 2004]. The state machines were tuned using an
extensive acoustic library of shots, converted to the ZC domain.

The signal detection algorithm proved to be quite robust. It recognized 100%
of the training events and more than 90% of the other recorded shot events.
(Note that, in reality, a shot may be detected by some sensors and may not be
recognized by others, depending on the location of the sensor.) False positives
could be produced only by physical contact with the microphone itself [Simon
et al. 2004].
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160 • Á. Lédeczi et al.

4. ROUTING INTEGRATED TIME SYNCHRONIZATION

Time synchronization is essential in the sensor network to make the distributed
TOA measurements meaningful. Explicit time synchronization methods, for
example, Elson et al. [2002], Ganeriwal et al. [2003], and Maróti et al. [2004],
require periodic (re)synchronization of the nodes through the communication
channel, thus increasing network traffic and power consumption. Early ver-
sions of the countersniper system [Simon et al. 2004] also used an explicit time
synchronization protocol described in Maróti et al. [2004], producing very ac-
curate synchronization.

As it is pointed out in Huang et al. [2000], post facto synchronization is
enough in many cases, thus no continuous synchronization is required. Sys-
tems collecting data or reacting to rare events, but requiring exact time mea-
surements belong to this class of applications. A post facto synchronization
approach described in Huang et al. [2000] utilizes explicit pair-wise synchro-
nization after message passing. An alternative method [Kusy et al. 2005] em-
beds the synchronization into the message routing protocol. This solution does
not require any additional message exchange apart from the routing messages,
but does require precise message time-stamping on both the transmitter and
receiver sides. Later versions of the countersniper system utilized this approach
[Lédeczi et al. 2005].

When a sensor in the network detects an event, it is time-stamped using the
sensor’s local, unsynchronized clock. The target node, that is, the base station,
possibly several hops away from the sensor, needs to know the time of the
event in its own local time. Without explicit synchronization in the network,
the routing process can be used to perform implicit time synchronization.

Along with the sensor reading, a radio message includes an age field, which
contains the elapsed time since the occurrence of the acoustic event. This addi-
tional information adds only a very small overhead to the message. Each inter-
mediate mote measures the offset, which is the elapsed time from the reception
of the packet with the sensor reading till its retransmission. The age field is
updated upon transmission using a precise low-layer time stamping method
described in Maróti et al. [2004]. When the sensor reading arrives at the des-
tination, the age field contains the sum of the offsets measured by each of the
motes along the path. The destination node can determine the time of the event
by subtracting age from the time of arrival of the message. The concept is illus-
trated in Figure 7. An event is detected at node A at time instant TEVENT, then
a notification message is sent to destination node S through nodes B and C. The
message delays at the nodes are offsetA offsetB, and offsetC, respectively. The
message arrives at S at time instant TrcvS containing an age field of offsetA +
offsetB + offsetC. The time of the event can be calculated as TEVENT = TrcvS- age.

The above method assumes that the offset values measured at different nodes
use the same time unit. In reality, however, clock frequencies differ slightly.
Since skew errors are not compensated for, error can accumulate during the
routing process. The accuracy of the clock used in the Mica2 mote is better than
50 ppm, thus the worst-case post-facto synchronization error can be estimated
as 5 ∗ 10−5 TR, where TR is the longest possible time of the message routing.
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Fig. 7. Estimation of detection time TEVENT can be iteratively determined along a routing path A,
B, C, S as TrcvS – offsetC – offsetB – offsetA. The horizontal axis is the timeline.

In the case of the countersniper system, messages older than two seconds have
no value, thus the max synchronization error is 100 µs. Experiments similar
to the typical countersniper application setup showed that the synchronization
error in a network of diameter 10 containing 45 nodes was 8 µs on average,
while the largest pairwise error observed was 80 µs [Kusy et al. 2005].

This time synchronization protocol can be further refined by exploiting ad-
vantageous properties of certain wireless routing protocols, for example, mes-
sages arrive at the base station multiple times along possibly different paths
[Maróti 2004]. Statistical analysis of multiple readings provides better estimate
on the time the event occurred [Lédeczi et al. 2005].

The uniquely advantageous features of the proposed integrated time syn-
chronization and routing algorithm, that is, no additional radio messages, sup-
port for power management, and the low imposed overhead on message size,
make the algorithm suitable for many power-aware data collecting applications
[Kusy et al. 2005].

5. SENSOR FUSION

The TOA measurements originating from either the muzzle blast or the shock-
wave can be used in the estimation process. Muzzle blasts are extremely useful
in near-field position estimation [Simon et al. 2004], while shockwaves provide
effective means to determine the direction of a distant shooter [Balogh et al.
2005]. In the next sections both methods will be reviewed and evaluated.

5.1 Muzzle Blast Fusion

There are a multitude of techniques for locating a static transmitting source
by an array of listening devices. Near-field beam forming methods are success-
fully used to detect multiple sources in noisy reverberant areas [Chen et al.
2002, 2003]. However, the most sophisticated methods require the transmis-
sion of the sampled data records between nodes and/or the base station, for
example, Chen et al. [2002]. A typical sensor network does not have the neces-
sary communication bandwidth to support this alternative. There exist similar
two-step techniques where in the first step the TOA, or equivalently the time
difference of arrival (TDOA) data is calculated (or alternatively, measured),

ACM Transactions on Sensor Networks, Vol. 1, No. 2, November 2005.
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and in the second step the location is calculated [Chen et al. 2002; Huang et al.
2000; Mahajan and Walworth 2001]. The communication burden of transmit-
ting measured TOA or TDOA data is acceptable.

Since a pair of sensor readings defines a hyperboloid surface in space, in
theory, four noncoplanar measurements are enough to determine a 3D location,
provided the speed of sound is known. Unfortunately, errors in detection, sensor
localization, and time synchronization all affect the accuracy of the solution.
Using more measurements and solving the over-determined equations help
overcome this problem [Chen et al. 2003; Huang et al. 2000; Mahajan and
Walworth 2001].

Conventional methods (e.g., ones using LS or maximum likelihood criteria)
work fine with noisy or even reverberant data, but in many cases, sensors not
having direct line-of-sight detect echoes only, resulting in large errors in lo-
calization. In our experiments, in urban areas, typically 10–50% of the sensor
readings provide erroneous data. Unfortunately, published localization meth-
ods do not address the problem of incorrect (TOA or TDOA) measurements. Sim-
ply applying the analytical solution or any other solution technique using the
whole data set possibly containing a large number of incorrect measurements
is not an option when high accuracy is required. Searching for the maximal set
of consistent measurement data by repeatedly applying the solver on different
subsets of input data is a possible solution, but not always computationally
feasible.

The solutions proposed in Simon et al. [2004], and later refined to handle
multiple shots in Lédeczi et al. [2005], utilized time of arrival data of the mea-
sured muzzle blasts. (Note that shockwaves in the early versions of the system
were used to determine the trajectory of the projectile after the shooter location
was determined using muzzle blasts [Simon et al. 2004].)

To find the position of the shooter(s), a consistency function on the four-
dimensional space-time space is defined. A fast multiresolution search algo-
rithm recursively finds the maxima of this function, which correspond to the
location and time of possible shots. Then, these maxima are further analyzed
to eliminate false positives caused by echoes. The consistency function is de-
fined in such a way that it automatically classifies and eliminates erroneous
measurements and multipath effects.

5.1.1 Consistency Function. Let N be the number of TOA muzzle blast
measurements, and for each i = 1, . . . , N let (xi, yi, zi) be the coordinates of the
sensor making the ith measurement, and ti the time of arrival of the detected
muzzle blast. Note that the measurements can contain good (line-of-sight) and
bad (delayed-echo) readings. Also, since, in an urban combat scenario, several
shots can be fired in a few seconds, the measurements may either correspond
to a single or multiple shots as well, not known a priori to the algorithm.

For any hypothetical shooter position (x, y , z) and shot time t, the theoretical
time of arrival of the muzzle blast at the sensor that recorded the ith measure-
ment is

ti(x, y , z, t) = t +
√

(x − xi)2 + ( y − yi)2 + (z − zi)2

vsound
,
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where vsound is the speed of sound. If the ith measurement is a direct line-of-sight
detection of this hypothetical shot, then, in theory, the times ti(x, y , z, t) and ti
must be equal. In practice, however, due to errors in sensor localization, time
synchronization and signal detection, only the following inequality is satisfied

|ti(x, y , z, t) − ti| ≤ τ, (1)

where τ = δ1/vsound + τ2 + τ3 is an uncertainty value, δ1 is the maximum sensor
localization error, τ2 is the maximum time synchronization error, and τ3 is the
maximum allowed signal detection uncertainty. For practical purposes, the lo-
calization error dominates τ . We assume that an upper bound for τ is known
based on an a priori evaluation of the sensor localization, time synchroniza-
tion and signal detection algorithms. The consistency function Cτ (x, y , z, t) is
defined as the number of measurements for which (1) holds:

Cτ (x, y , z, t) = count
i=1,...,N

(|ti(x, y , z, t) − ti| ≤ τ ).

The value of the consistency function for any (x, y , z, t) defines the number of
measurements supporting the hypothesis that the shot was taken from (x, y , z)
at time t, with uncertainty value τ . The consistency function is integer valued
and always less than or equal to N . It is additive for the list of TOA measure-
ments, and increasing in τ . Although Cτ (x, y , z, t) is not continuous, it satisfies
the crucial property utilized in the discrete search algorithm:

Cτ/4(x ′, y ′, z ′, t ′) ≤ Cτ (x, y , z, t), (2)

whenever |x − x ′|/vsound, | y − y ′|/vsound, |z − z ′|/vsound, |t − t ′| ≤ τ/2.
The consistency function usually takes its maximum value not in a single

point, but in a 4-dimensional area, called the max area. The size of the max
area depends on τ . If erroneous measurements are present, it is theoretically
possible that there are more unconnected max areas, and it is also possible that
the true location of the shot is not contained in the max area. Although simple
counterexamples can be easily generated using enough bad measurements,
in practical situations local maxima generated by multipath effects (mirror
effect) are smaller than the maximum corresponding to the true shooter position
[Simon et al. 2004].

The countersniper system recursively calculates the maximum of the consis-
tency function as the location (and time) estimate of the shot. Since gradient-
type search methods do not guarantee global convergence on a surface with
multiple local maxima, a different method is utilized. Our fast multiresolution
search algorithm finds the global maximum by searching the relevant sections
of the space-time only, iteratively zooming to the correct spot.

5.1.2 Search Algorithm. The time complexity of finding the maximum of
the consistency function in the guarded area [X min, X max] × [Ymin, Ymax] ×
[Zmin, Zmax] and in the appropriate time window [Tmin, Tmax] using a simple
search is linear in terms of X max − X min, Ymax − Ymin, Zmax − Zmin, Tmax − Tmin
and N , because by (2) it is enough to evaluate Cτ/4(x ′, y ′, z ′, t ′) at grid points of
the search space with uniform distance vsoundτ/2 for the x, y and z coordinates,
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and τ/2 for t, and then finding the maximum among these points. However,
the number of computation steps quickly becomes astronomical in practice,
exceeding 1012 in our field experiments, rendering this simple algorithm not
viable.

There is an extensive literature on several well-known algorithms for find-
ing the local and global maxima of nonlinear functions, such as the Newton,
Levenberg–Marquardt and Generalized Bisection methods. Since the consis-
tency function is not continuous and we are interested in finding its global
maxima, we applied the Generalized Bisection method based on interval arith-
metic [Xu and Yang 2002]. Interval arithmetic introduces algebraic operations
on closed intervals that represent possible values of variables. Every alge-
braic expression, including our definition of the consistency function, can be
evaluated for intervals. For intervals [xmin, xmax], [ ymin, ymax], [zmin, zmax] and
[tmin, tmax], the consistency function yields the interval

[
Cmin

τ , Cmax
τ

] = Cτ ([xmin, xmax], [ ymin, ymax], [zmin, zmax], [tmin, tmax])

that have the property

Cmin
τ ≤ Cτ (x, y , z, t) ≤ Cmax

τ

for every xmin ≤ x ≤ xmax, ymin ≤ y ≤ ymax, zmin ≤ z ≤ zmax and tmin ≤ t ≤ tmax.
The value Cmin

τ is the number of measurements that satisfy (1) for all points
of the 4-dimensional rectangular region determined by [xmin, xmax] × · · · ×
[tmin, tmax], while Cmax

τ is the number of measurements that satisfy (1) for some
point of the same region.

During the search, we maintain a list of 4-dimensional rectangular regions
(“boxes”), initially containing only [X min, X max] × [Ymin, Ymax] × [Zmin, Zmax] ×
[Tmin, Tmax], together with their evaluation under the consistency function. At
each step, we remove the region that has maximum Cmax

τ value from the list,
bisect it into two equal parts along its longest dimension, and insert the two
resulting regions back to the list. We stop this procedure when the size of the
maximum region is less than vsound τ/2 for the space and τ/2 for the time co-
ordinate. The resulting 4-dimensional region is guaranteed to contain at least
one global maximum point of the consistency function Cτ (x, y , z, t). Note that
there may be several boxes with the same Cmax

τ value, usually covering a small
area around the true location. When displayed, this area provides an easily
understandable visual representation of the uncertainty region of the location
estimate.

When the global maximum with consistency value K is found, the K mea-
surements contributing to it are removed and a new consistency function with
the rest of the measurements is defined, and the search algorithm is restarted,
until sufficiently high peaks (in practice with consistency value greater than
7–8) are detected. Note that the removal of “used” measurements speeds up the
next search rounds as well.

Subsequent maxima correspond to either separate shots or echoes. An echo
detection algorithm removes candidates possibly caused by multipath effects.
The elimination process is based on the simple phenomenon that for a true
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position (x, y , z, t) and its mirror image (xM , yM , zM , tM ) it is true that t ≈ tM . If
multiple peaks correspond to the same shot time within a limit (a few times τ/2),
only the one with the highest consistency value is kept, the others are labeled
as echoes. Mirror images are formed by reverberated signals. Since the surfaces
of buildings, other structures, etc. do not behave as one perfect mirror, the con-
sistency value of mirror images in practice is seldom high, and almost always
smaller than that of the true location, where good quality line-of-sight measure-
ments are used. Of course, the method can be fooled if sensors are placed so
that more sensors can sense the same reverberated signal than the line-of-sight
signal. It is also possible that some of the true shots are eliminated as echoes,
if their shot times are too close to each other. However, these are all unlikely
events.

The speed of the search algorithm is remarkable. Compared to the simple
linear search, the proposed solution provides more than eight orders of magni-
tude smaller computational complexity, resulting in approximately one second
latency in field tests [Simon et al. 2004].

5.2 Shockwave Fusion

As described in Section 1, the shape of the Mach-cone is constantly changing
as the bullet decelerates. However, we assume constant bullet speed within the
sensor network to simplify the necessary calculations. The approximation is
valid if the size of the sensor field is within a hundred meters, as shown by
the remarkably good results in Section 6.4. In case of larger deployments, the
fusion procedure can restrict the set of sensor readings considered so that they
satisfy this constraint.

Sensors can identify the shockwave based on its unique waveform and the
significant energy level. Based on the shockwave TOA measurements the bullet
trajectory can be computed. The problem, similarly to the muzzle blast-based
localization, is exacerbated by noisy and erroneous measurements, and possibly
multiple simultaneous shots. Thus, a numerical approach, based on minimizing
an error function, is applied.

The consistency function-based technique utilized in the muzzle blast fusion
could easily be generalized by combining muzzle blast and shockwave measure-
ments to contribute to the same consistency function. However, the number of
dimensions would increase significantly. In addition to the shooter position
(x, y , z) and the shot time t, the two angles for azimuth and elevation, and the
speed of the projectile would result in a 7-dimensional space, where the search is
currently computationally infeasible. Instead, a genetic algorithm was applied
for shockwave fusion.

The real-time fusion algorithm receives shockwave measurements from the
sensor network. First, the slicing algorithm splits the received measurements
into smaller groups representing single shots or possibly almost simultaneous
multiple shots. Then a genetic algorithm searches for the trajectories in each
group that match the measurements the best. Once the best trajectories have
been found and muzzle blast measurements are available, the range is also
estimated.
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5.2.1 Slicing. The slicing algorithm is responsible for splitting the incom-
ing measurements into relatively small, processable groups. The slicing tries
to provide groups with small size, ensuring that measurements from obviously
different shockwaves do not belong to the same group.

A rough group formation is done by bounding the max time difference be-
tween any two measurements in the group. Then, the shockwave measurements
in a group are sorted by time and split into smaller groups if and where there
are larger time gaps than D/vsound , where D is the maximum of pairwise dis-
tances between sensors in the field. The rationale behind this step is that two
shockwave measurements with a larger time difference cannot be the result of
a single shockwave because the wave front travels at the speed of sound and
the projectile travels even faster [Balogh et al. 2005].

5.2.2 Trajectory Search. Given n shockwave measurements:

s1(x1, y1, z1, t1), s2(x2, y2, z2, t2), . . . , sn(xn, yn, zn, tn),

where xi, yi, zi are the coordinates of sensor i, and ti is the TOA
of the shockwave at sensor i, we are looking for multiple trajectories
tr1(X 1, Y1, Z1, α1, β1, v1), . . . , trm(X m, Ym, Zm, αm, βm, vm) that can generate
the given measurements, where X j , Y j , Z j is a point of the trajectory, α j is
the azimuth, β j is the elevation and vj is the speed of the projectile. The
X j , Y j , Z j point of the trajectory is the point where the bullet was at time
t0, where t0 = 1/n

∑n
i=1 ti. This is a somewhat arbitrary choice for a single point

on the trajectory that is close to the sensor field.
For a given trajectory tr j (X j , Y j , Z j , α j , β j , vj ) and a shockwave measure-

ment si(xi, yi, zi, ti), the theoretical time of arrival of the shockwave t ′
i at the

sensor can be calculated using simple Euclidean geometry.
From the measured and the theoretical time of arrivals, an error function

of the trajectory is calculated. A genetic algorithm (GA) has been used to find
the trajectory with the smallest error. The brief description of the GA is the
following:

(1) Generate an initial population of Q random trajectories.
(2) Select w individuals randomly from the population.
(3) Evaluate each individual in the selected subset using the error function

(described later).
(4) Sort the subset according to error.
(5) Remove the worst 20% of the individuals in the subset, then generate new

individuals by selecting random parents from the best 20% and applying
genetic operators on the parents.

(6) Go to Step (2).

Typical parameters used were Q = 5000 and w = 500. A general problem
with GA is that it can get stuck in a local minimum when the whole pop-
ulation becomes homogeneous containing the same exact individuals. Dif-
ferent heuristics have been proposed to avoid this problem. We use the
tournament selection technique [Blickle and Thiele 1995] to give a chance
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for individuals with higher error value to breed and to slow down the
homogenization.

In the presence of multiple shots or erroneous measurements (i.e., echoes),
the whole set of measurements cannot be used: nonecho measurements be-
longing to the same shot need to be identified. Therefore, we have extended the
representation of a trajectory with the subset of the measurement indexes. This
way not only does the GA search for the trajectory, but also for a set of consistent
measurements for which the trajectory has the smallest error. Once the best
trajectory is found, the corresponding events are removed from the group and
the search is started again using the rest of the data. It is repeated until the
number of events becomes too small to be able to define a new solution. Since
the trajectory has six parameters, at least six measurements are necessary.

The representation of a possible solution is the following: sol(x, y , z, α, β,
v, S), where x, y , z, α, β, v is the trajectory parameters and S is a subset of
shockwave measurement indices from 1 to n.

The following error function has been used to evaluate a given solution
sol(x, y , z, α, β, v, S):

error =



1
|S|

√∑
i∈s

(ti − t ′
i)2 |S| ≥ K

∞ |S| < K ,

where i ∈ S
′
iff i ∈ S or|ti − t ′| < T .

The error function is infinite if the number of selected measurements is
smaller than K . Otherwise, an extended set of measurements S

′
is selected to

calculate the error, containing elements of S and also the ones that has smaller
time error than T . The value of K was set to 7 after experimentation with field
data, while T was set to the value of the largest possible measurement error
resulting from the sensor localization error [Balogh et al. 2005].

5.3 Range Estimation

Using the estimated trajectory based upon shockwave measurements and at
least a few muzzle blast detections, the range of the source can also be esti-
mated. Again, special care must be taken of potential multipath measurements
and multiple shots.

Once the trajectory is estimated, the projectile location (X , Y , Z ) at time in-
stant t0 is available, along with the elevation, azimuth and the speed of the
projectile. Thus, the complete timeline of the bullet can be computed, provided
the speed of the projectile is constant, by associating a time instant t with
each bullet location (x, y , z) on the trajectory. As the unknown location of the
shooter is also on the trajectory, a straightforward solution is to correlate the
timeline of the bullet and the muzzleblast TOA data, using a simplified con-
sistency function approach. Note that the search in his case is reduced to the
one-dimensional space along the estimated trajectory, as follows:

A sliding window is moved backward on the trajectory to find the shooter
position. The simplified consistency function at the trajectory position (x, y , z)
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and its corresponding time t is defined as

Cδ(x, y , z, t) = count
i=1,...,N

(
di

min < (ti − t)vsound < di
max

)
,

where di
min and di

max are the minimum and maximum distances, respectively,
between sensor position (xi, yi, zi) (with TOA measurement ti) and the sliding
window of width δ, centered at (x, y , z) along the trajectory. The width of the
window is determined by the estimated detection errors, a typical number being
1 meter.

The window position (x, y , z) with the highest consistency value Cδ(x, y , z, t)
gives the estimated origin of the shot and, hence, the range. Similarly to the
muzzle blast case, this solution automatically eliminates the erroneous mea-
surements, and also the measurements corresponding to other shots.

6. EVALUATION

During the development period, several field tests were conducted in two U.S.
Army facilities to evaluate the performance and accuracy of the shooter local-
ization system. The data collected in the field tests were used to determine
the accuracy of the system and its sensitivity to various sources of errors. In
the following sections, fusion technologies based on the muzzle blast and the
shockwave are analyzed separately.

6.1 Error Sources and Analysis Techniques

The sensor fusion algorithms use TOA measurements recorded by different
sensors at different known locations. Hence, potential sources of measure-
ment error are imperfect time synchronization and inaccurate sensor loca-
tions. The accuracy of the localization is also affected by the number and
density of sensors used. Naturally, the acoustic environment also has a great
impact on the performance of the system. In our experiments, urban test
facilities were used, providing challenging environments rich in multipath
effects.

In the field trials, the system was operated to provide its best performance,
thus the maximum number of available nodes were utilized with precise time
synchronization service, and the sensor localization was performed with ap-
proximately 20–30 cm precision. The data gathered at the field trials enabled
us to experiment with the effects of potential error sources on the overall system
accuracy offline. To perform the sensitivity analysis, the measured TOA values
and the sensor locations were randomly modified to simulate the effects of ad-
ditional time synchronization and sensor localization errors. Also, readings of
randomly selected sensor units were neglected to study the effect of decreasing
sensor density.

6.2 Muzzleblast Fusion Results

One of the field tests was performed in the MOUT training facility in Ft. Ben-
ning, GA, in July 2003. In this setup, 56 motes were deployed in the central
area of the McKenna village as shown in Figure 8, a screen dump of the system
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Fig. 8. 2D system display, showing the aerial photo of the test site.

graphical user interface that includes an overhead picture of the MOUT site.
The estimated position of the shooter is shown by the large circle, while the
direction of the shot is indicated by an arrow. (Note that the shot direction was
estimated from shockwave data, using and alternative approach described in
Simon et al. [2004].) Other circles indicate the sensor positions where medium-
sized ones denote sensor locations whose data were utilized in the current lo-
cation estimation.

The sensors were hand-placed, with an estimated position error of 20–30 cm.
For error analysis purposes, 20 different known shooter positions were used in
the experiment. During the test, 171 shots were fired, 101 of which were blanks
and 70 were short range training ammunitions (SRTAs). Since the performance
of the system was similar for both types of ammunition, only the unified results
are presented.

The localization error of the system is shown in Figure 9, where the 3D error
is the total localization error, while in the 2D error the elevation information is
omitted. The system accuracy is remarkably good in 2D: the average error was
0.6 m, 83% of shots had less than one meter, and 98% had less than 2 meters
of error.
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Fig. 9. Histogram of localization accuracy in 3D and 2D.

Fig. 10. Localization accuracy vs. time synch error.

In 3D, the average error was 1.3 m, 46% of the shots had less than 1 m, and
84% of shots had less than 2 m of localization error.

6.3 Muzzleblast Fusion Sensitivity

The effects of time synchronization error are summarized in Figure 10. For
each simulated time synchronization error value of T, the detection time for
each sensor was modified by a uniformly distributed random value �t, where
−T/2 < �t < T/2. Then the sensor fusion algorithm was run to estimate the
shooter position. Each shot was used ten times; therefore, each data point in
the diagram represents 1710 experiments.

The results in Figure 10 clearly show that the time synchronization
accuracy is much better than what is needed by this application. The
added 3D localization error of 10 cm in the presence of 0.5 ms time syn-
chronization error is insignificant. On the other hand, for multiple shot
detection and echo discrimination, well-synchronized measurements are
advantageous.
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Fig. 11. Localization accuracy vs. sensor position error.

Fig. 12. Detection rate vs. number of sensors used.

The effect of the sensor localization error was simulated in a similar man-
ner. The sensor positions were altered by adding uniformly distributed random
values �, −�max < � < �max, to the true positions originally measured and
used in the field experiments. The fusion algorithm was run with the original
measured TOA values, but used the modified sensor position data. Note that
the “true” sensor positions had approximately 0.3-m position error, which is not
included in �max. The results are shown in Figure 11, where 1000 randomized
runs were performed and averaged for each �max value. The localization error is
a nicely bounded, approximately linear function of the position error for small
�max values. It’s clear from the results that in practice the sensor localization
error dominates the negligible time synchronization error.

We have also analyzed the effects of sensor density. Again, we used the real
data gathered on the field and then removed sensors randomly. The results
are shown in Figure 12 and Figure 13. For each N , where N is the number of
sensors and N ≤ 56, we generated a random subset of the 56 available nodes,
ran the sensor fusion for all the shots and repeated the procedure ten times.
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Fig. 13. Localization accuracy vs. number of sensors used.

Since N was decreased by two at a time and we stopped at eight nodes, we
tested 250 different sensor network configurations.

We consider a shot undetected if there are less than six sensors detecting a
muzzle blast. As the numbers of sensor decreased, so did the number of suc-
cessfully detected shots as shown in Figure 12. Hence, the data in Figure 13
only uses the successfully detected shots. The diagram indicates that the error
has an exponential characteristic. Close to our original setup, the error hardly
increases. At 36 nodes, the average 3D error is still less than 2 meters. Beyond
this point, however, the accuracy starts to decrease rapidly.

The raw results could lead to a premature conclusion that we could decrease
the node density by 40% and still get very good accuracy. However, there are
other considerations. Node failures decrease sensor density over time, so the
planned deployment length needs to be considered. It is not enough to mea-
sure the acoustic events; the data also needs to be propagated back to the base
station. There must be enough nodes to ensure a connected network with re-
dundancy for robustness and good response time.

The overall accuracy of the system during the field tests in an urban environ-
ment indicates its tolerance to multipath effects. Of the 171 shots used in the
analysis above, the average rate of bad measurements, that is, TOA data mea-
sured by individual sensor nodes that were not consistent with the final shooter
location estimate, was 24%. In our experience, the vast majority of erroneous
TOA data were due to multipath.

It is possible to solve the TDOA-based localization problem analytically, for
example, as in Mahajan and Walworth [2001], where the constraints from mea-
surements are converted to a linear equation system. This solution requires five
measurements to determine the 3D position of a source, but it is straightfor-
ward to extend the solution in Mahajan and Walworth [2001] for more sensor
readings. The solution of the over-determined equation system provides a least-
squares estimation of the shooter location. We used this approach to evaluate
our sensor fusion technique.

To compare the accuracy of the fusion algorithm to that of the analytical
solution, field sensor measurements of 46 shots with known positions were used
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Fig. 14. Histogram of the localization errors using the fusion algorithm and the analytical solution.

as test cases. In the first test all the bad measurements resulting from multipath
effects or sensor failure were removed from the data set. Each of the remaining
set of good measurements was consistent with the known shooter position with
time error less than 0.5 ms for each sensor reading. The shooter positions were
estimated using both methods. The accuracies of the two solutions were very
close to each other, as the histogram of errors shows in Figure 14. The mean
3D localization error for the fusion algorithm and the analytical solution were
1.2 m and 1.3 m, respectively, for the 46-shot test set. The difference is much
less than the sensor position and the reference shooter position measurement
errors, thus the performance of the two solutions can be considered to be equally
good in this artificial test scenario.

In the previous test, the input contained only correct measurements. In prac-
tical cases, however, inconsistent measurements are present primarily due to
multipath effects, even after careful pre-filtering of the sensor readings. To illus-
trate the sensitivity of the methods to measurement errors, bad sensor readings
were added back to the input data set from the previously removed bad data
set. For each shot, 2B test sets were generated by combining the good measure-
ment set with all possible combinations of the bad sensor readings containing
B measurements. The number of good and bad sensor readings varied between
8 and 29, and between 1 and 10, respectively. Using all the 46 shots, 325 exper-
iments were generated as test cases. Figure 15 shows the performances of the
two methods, as a function of the ratio of the bad and good measurements.

It is clearly visible that the precision of the analytical solution was severely
degraded when bad measurements were present, even in relatively small ratio.
The fusion algorithm, however, was able to successfully eliminate the bad mea-
surements, and its performance was the same as in the first test, independently
of the ratio of the bad and good measurements.

6.4 Shockwave Fusion Results

The shockwave fusion algorithm was tested in the U.S. Army Aberdeen Test
Center, in December 2004. The sensor network of 60 motes covered an 80 ×
80 m area. The motes were placed on surveyed positions with an estimated
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Fig. 15. The average localization error vs. the ratio of bad and good measurements.

accuracy of 20 cm. About half of the motes were on the ground, the rest were
placed at elevations up to 6 m. Shooter positions were also surveyed. They were
located up to 100 m from the edge of the sensor field. Two locations were in the
basket of a cherry picker at approximately 12 m height. Various targets were
placed inside and outside the sensor field opposite from the shooter positions. In
one particular experiment, 12 shots were fired over the middle of the network
shooting approximately 100 meters from the edge of the sensor field, so there
were sensors on each side of the trajectory. The average azimuth error was 0.66
degrees, the average elevation error was 0.61 degrees, and the average range
error was 2.56 meters. Another 11 shots were fired from the same distance near
the edge of the network, so there were no or only a few sensors on one side of
the trajectory. The average error increased to 1.41 degrees in azimuth, to 1.11
degrees in elevation and to 6.04 meters in range.

The latency of the shockwave-based fusion algorithm is somewhat greater
than that of the muzzle-blast-based technique: the calculation of a single-shot
trajectory takes about 3–4 seconds on a 3 GHz PC.

Multiple simultaneous shots have also been tested with mixed results. The
typical test involved two shots only. About half the time, the system correctly
localized both trajectories. There were cases, however, when three trajectories
were found. Two of these were typically very close to each other and one of the
true trajectories. This error can happen when there is more than double the
number of detections needed for localizing a single trajectory. In such a case,
the error value corresponding to a subset of the detections may be smaller than
the one involving all the detections for one trajectory. The error function and the
genetic algorithm need to be adjusted to avoid this situation.

Finally, the problem we refer to as “trajectory inversion” was also observed
numerous times. Consider the two trajectories shown in Figure 16. One side
of the generated shockwaves is almost the same. If we have sensors such
that only this side is being measured, the wrong trajectory can be identi-
fied. In fact, the only way to differentiate the two possible sources of the
half shockwave front is to measure its curvature caused by the deceleration
of the projectile. However, that would mandate highly accurate sensor place-
ment and very precise time synchronization. This can only be achieved by a
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Fig. 16. Trajectory inversion problem.

microphone array with fixed and known microphone separation and a shared
clock.

The area of correctly localizing multiple concurrent long range shots based on
shockwave measurements needs further research. Unfortunately, we only had
the opportunity to conduct a single field test. Our project ended in December
2004 and we have not worked on improving the presented techniques since.

The performance of the system is comparable to the published results of
commercial centralized countersniper systems. BBN’s Bullet Ears system uti-
lizes one or two small arrays of microphones, providing estimates of the caliber,
speed and trajectory of the projectile, and also a range estimate for the shooter.
The average accuracy of the azimuth and elevation estimators is approximately
1.2 and 3 degrees, respectively, while the distance estimator’s accuracy is ap-
proximately 1.6% [Duckworth et al. 1996]. The similar Pilar system uses two
microphone arrays achieving bearing and range accuracy of ±2◦ and ±10%,
respectively [Pilar Systems].

6.5 Shockwave Fusion Sensitivity

To test the sensitivity of the fusion algorithm to the dominant sensor location
error, we have conducted a preliminary experiment using the 12 shots fired in
the middle of the network described above. The measured TOA results were
used with modified sensor locations, similarly to the experiment in Section 6.3.
The results for elevation accuracy look very similar to those of the azimuth
summarized in Figure 17.

For each maximum additional sensor location error, each shot was tested ten
times using different sensor locations. Therefore, each bar in the figure repre-
sents 120 experiments. The apparent insensitivity of the fusion to moderate
sensor location errors is encouraging for the future development of the system.
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Fig. 17. Azimuth error vs. sensor localization error.

7. CONCLUSIONS

The article presented a comprehensive description of a real world application of
wireless sensor networks. The success of the system is demonstrated by the fact
that it has been transitioned to the industry. The fact that the system outper-
forms existing traditional systems in many respects in an extremely challenging
application domain is a proof that WSN technology can indeed fulfill its great
promise.
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