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Abstract: The aim of this paper is to show that the structure of the global attractor

for delayed monotone positive feedback can be more complicated than the union of

spindle-like structures between consecutive stable equilibria with respect to the point-

wise ordering. Large amplitude periodic orbits � in the sense that they are not between

two consecutive stable equilibria � are constructed for nonlinearities close to a step

function. For some nonlinearities there are exactly two large amplitude periodic orbits.

By describing the unstable sets of these periodic orbits, a complete picture is obtained

about the global attractor outside the spindle-like structures.
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1. Introduction

The delay di�erential equation

(1.1) ẋ (t) = −µx (t) + f (x (t− 1))

with µ ≥ 0 and smooth monotone nonlinearity f : R → R appears in several applica-

tions, see e.g. [6, 7, 11, 17, 31] and the references therein.

The natural phase space for Eq. (1.1) is C = C ([−1, 0] ,R) equipped with the supre-

mum norm. For any ϕ ∈ C, there is a unique solution xϕ :[−1,∞) → R of (1.1). For
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each t ≥ 0, xϕt ∈ C is de�ned by xϕt (s) = xϕ (t+ s), −1 ≤ s ≤ 0. The map

Φ : [−1,∞)× C 3 (t, ϕ) 7→ xϕt ∈ C

is a continuous semi�ow. Very much is known about the global dynamics of Eq. (1.1).

A discrete Lyapunov functional, as a key technical tool, combined with several other

dynamical system methods makes is possible to prove a Poincaré�Bendixson type result

for (1.1) [22] and to obtain a lot of information about the structure of the global

attractor [13, 14, 15, 16, 17, 20, 23, 24, 29]. For some particular nonlinearities like

f (x) = α tanh (βx) or f (x) = α tan−1 (βx) with α 6= 0 and β > 0, a complete picture

is available [17]. However, for most of the nonlinearities such a nice description is not

known. A famous example is Wright's equation: µ = 0, f (x) = −α (ex − 1), α > 0.

Assume (see Fig. 1)

(H1) µ > 0, f ∈ C1 (R,R) with f ′ (ξ) > 0 for all ξ ∈ R, and

ξ−2 < ξ−1 < ξ0 = 0 < ξ1 < ξ2

are �ve consecutive zeros of R 3 ξ 7→ −µξ + f (ξ) ∈ R with f ′ (ξj) < µ <

f ′ (ξk) for j ∈ {−2, 0, 2} and k ∈ {−1, 1}.
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Figure 1. A feedback function satisfying condition (H1)

Under hypothesis (H1), ξ̂j ∈ C de�ned by ξ̂j (s) = ξj, −1 ≤ s ≤ 0, is an equilibrium

point of Φ for j ∈ {−2,−1, 0, 1, 2}. In addition, ξ̂−2, ξ̂0, ξ̂2 are stable and ξ̂−1, ξ̂1 are

unstable. By the monotone property of f , the subsets

Cj,k = {ϕ ∈ C : ξj ≤ ϕ (s) ≤ ξk, −1 ≤ s ≤ 0}
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of the phase space C with j ∈ {−2, 0} and k ∈ {0, 2} are positively invariant under the

semi�ow Φ. The structures of the global attractors A−2,0 and A0,2 of the restrictions

Φ|[0,∞)×C−2,0 and Φ|[0,∞)×C0,2 , respectively, are (at least partially) well understood, see

e.g. [13, 14, 15, 16, 17, 18]. In particular cases, A−2,0 and A0,2 have spindle-like struc-

tures described in [13, 16, 17, 18]: A0,2 is the closure of the unstable set of ξ̂1 containing

the equilibrium points ξ̂0, ξ̂1, ξ̂2, periodic orbits in C0,2 and heteroclinic orbits among

them; and analogously for A−2,0.

Let A denote the global attractor of the restriction Φ|[0,∞)×C−2,2 . It is easy to see

that if (H1) holds and ξ−2, ξ−1, 0, ξ1, ξ2 are the only zeros of −µξ + f (ξ), then A is the

global attractor of Φ. The problem, whether under hypothesis (H1) the equality

(1.2) A = A−2,0 ∪ A0,2

holds or not, arose in [17], see Fig. 2.

Figure 2. A−2,0 ∪ A0,2

The main result of this paper is that A can be more complicated than given by (1.2).

We construct examples so that Eq. (1.1) with assumption (H1) has periodic orbits in

A\ (A−2,0 ∪ A0,2). The periodic solutions de�ning these periodic orbits oscillate slowly

around 0 and have large amplitudes in the following sense.

A periodic solution x : R → R of Eq. (1.1) is called a large amplitude periodic

solution if x(R) ⊃ (ξ−1, ξ1). A solution x : R → R is slowly oscillatory if for each t,

the restriction x|[t−1,t] has 1 or 2 sign changes. A solution x : R → R is called slowly

oscillatory around ξj if R 3 t 7→ x(t)− ξj ∈ R is slowly oscillatory. Note that here slow

oscillation is di�erent from the usual one used for equations with negative feedback
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condition [6, 29]. A large-amplitude slowly oscillatory periodic solution x : R→ R will

be abbreviated as an LSOP solution. We say that an LSOP solution x : R → R is

normalized if x(−1) = 0, and for some η > 0, x(s) > 0 for all s ∈ (−1,−1 + η).

Theorem 1.1. There exist µ and f satisfying (H1) such that Eq. (1.1) has exactly two

normalized LSOP solutions p : R → R and q : R → R. For the ranges of p and q,

p(R) ( q(R) ⊂ (ξ−2, ξ2) holds. The corresponding periodic orbits

Op = {pt : t ∈ R} and Oq = {qt : t ∈ R}

are hyperbolic and unstable with 2 and 1 Floquet multipliers outside the unit circle,

respectively.

In the situation of Theorem 1.1, let Wu (Op) and Wu (Oq) denote the unstable sets

of Op and Oq, respectively [6, 17].

The nonlinearity f and constant µ in Theorem 1.1 are given so that there exist

periodic solutions oscillating slowly around ξ1 and ξ−1 with ranges in (0, ξ2) and (ξ−2, 0),

respectively [17]. Among these periodic solutions there are x1 and x−1 so that the ranges

x1(R) and x−1(R) are maximal in the sense that x1(R) ⊃ x(R) for all periodic solutions

x oscillating slowly around ξ1 with range in (0, ξ2), analogously for x−1, see Proposition

2.7. Set

O1 =
{
x1
t : t ∈ R

}
and O−1 =

{
x−1
t : t ∈ R

}
.

Under further restriction on f , the dynamics in A\ (A−2,0 ∪A0,2) can be completely

described.

Theorem 1.2. One may set µ and f satisfying (H1) such that the statement of Theorem

1.1 holds, and for the global attractor A we have the equality

A = A−2,0 ∪ A0,2 ∪Wu (Op) ∪Wu (Oq) .

Moreover, the dynamics on Wu (Op) and Wu (Oq) is as follows.

For each ϕ ∈ Wu (Oq) \ Oq, the omega limit set ω (ϕ) is either
{
ξ̂−2

}
or
{
ξ̂2

}
, and

there exist heteroclinic connections from Oq to
{
ξ̂−2

}
and to

{
ξ̂2

}
.

For each ϕ ∈ Wu (Op) \ Op, ω (ϕ) is one of the sets
{
ξ̂−2

}
,
{

0̂
}
,
{
ξ̂2

}
, Oq, O1, O−1.

There are heteroclinic connections from Op to
{
ξ̂−2

}
,
{

0̂
}
,
{
ξ̂2

}
, Oq, O1 and O−1.

The system of connecting orbits is represented in Fig. 3. The dashed arrows represent

heteroclinic connections in A−2,0 and in A0,2, while the solid ones represent connecting

orbits given by Theorem 1.2.
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Figure 3. Connecting orbits

In Theorems 1.1-1.2 the nonlinear map f is close to the step function fK,0 parametrized

by K > 0 and given by fK,0 (x) = 0 for |x| ≤ 1, and fK,0 (x) = Ksgn (x) for |x| > 1.

Equations with such nonlinearity model neural networks of identical neurons that do

not react upon small feedback; the feedback has to reach a certain threshold value to

have a considerable e�ect [8]. Our result may have interesting consequences for the

dynamics of neural networks with the above property. See [2, 3, 4, 5, 31] for a bistable

situation.

Suppose f is odd and satis�es (H1). It follows from results in [22] that if x : R→ R is

an LSOP solution of Eq. (1.1) with minimal period ω > 0, then the following statements

hold.

(i) ω ∈ (1, 2).

(ii) Solution x is of special symmetry meaning that relation x (t+ ω/2) = −x (t)

holds for all t ∈ R.
(iii) Solution x is of monotone type in the following sense: if t0 < t1 < t0 + ω is set

so that x (t0) = mint∈R x(t) and x (t1) = maxt∈R x(t), then x is nondecreasing on [t0, t1]

and nonincreasing on [t1, t0 + ω].

This motivates the next de�nition. We say a periodic solution x : R→ R of Eq. (1.1)

with feedback function fK,0, K > 0, is an LSOP solution if properties (i), (ii) and (iii)

hold for x.

For Eq. (1.1) with µ = 1 and f = fK,0, the LSOP solutions are described in Theorem

6.5: there is no such solution if K < K∗ ≈ 6.8653 and there are two for K > K∗ (up

to time translation). It can be also veri�ed that there is exactly one LSOP solution for

K = K∗. This is the starting point of our construction. The implicit function theorem
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and perturbations of Poincaré maps from [19] can be applied to �nd exactly two LSOP

orbits of Eq. (1.1) for µ = 1 and nonlinearities that satisfy (H1) and are close to fK,0

with K > K∗. We prove only the case K = 7, which su�ces for the proof of Theorem

1.1. Our results and numerical examples suggest that the LSOP orbits appear in a

saddle-node-like bifurcation. However, it remains an open problem to understand this

phenomenon.

The paper is organized as follows. The preliminary Section 2 lists de�nitions and no-

tations. The notion of LSOP solutions is extended for a slightly wider range of feedback

functions including smooth approximations of fK,0. A discrete Lyapunov functional of

Mallet-Paret and Sell [21] is introduced, their feedback inequality is weakened in order

to allow not strictly monotone nonlinearities as well. It is also shown that for cer-

tain nonlinearities satisfying (H1), there are periodic solutions with maximal ranges in

(ξ−2, 0) and (0, ξ2) oscillating slowly around ξ−1 and ξ1, respectively.

Section 3 introduces a smooth approximation fK,ε, ε ∈ [0, 1), of the step function

fK,0. Fix K > 3. We de�ne an open set U1 in (0, 1)3 × [0, 1) and a continuous map

Σ : U1 → C so that for ε > 0 small, U1
ε 3 a 7→ Σ (a, ε) ∈ C is smooth and its derivative

is injective (see Proposition 3.7), where U1
ε denotes the set

{
a ∈ (0, 1)3 : (a, ε) ∈ U1

}
.

Consequently, Σ (U1
ε × {ε}) is a 3-dimensional C1-submanifold of C. There exists an

open subset U3 of U1 such that if µ = 1 and f = fK,ε, then for all (a, ε) ∈ U3,

the solution xΣ(a,ε) : [−1,∞) → R of Eq. (1.1) returns into Σ (U1
ε × {ε}), i. e., there

exists a minimal t > 0 with x
Σ(a,ε)
t ∈ Σ (U1

ε × {ε}). This induces a smooth map F :

U3 → R3 so that for all (a, ε) ∈ U3, we have F (a, ε) = b if xΣ(a,ε)
t = Σ (b, ε) with a

minimal t > 0. If F (a, ε) = a holds for some (a, ε) ∈ U3, then the solution xΣ(a,ε)

of Eq. (1.1) with µ = 1 and f = fK,ε is an LSOP solution. Therefore the problem of

�nding LSOP solutions is reduced to a 3-dimensional �xed point equation depending

on parameter ε. Proposition 3.8 shows that there is K∗ ≈ 6.8653 so that for K > K∗,

equation F (a, 0) = a has a unique solution a∗ in U3
0 =

{
a ∈ (0, 1)3 : (a, 0) ∈ U3

}
. The

�xed point a∗ is hyperbolic; it is rigorously checked for K = 7. Then the implicit

function theorem gives that if K = 7, then equation F (a, ε) = a has a solution a∗ (ε)

in U3
ε =

{
a ∈ (0, 1)3 : (a, ε) ∈ U3

}
for small ε > 0 so that DaF (a∗ (ε) , ε) is hyperbolic.

Analogously to the above construction, Subsection 3.2 gives another LSOP solution of

(1.1) with µ = 1 and f = f 7,ε for ε > 0 small.

Other examples, in which the problem of �nding periodic solutions is reduced to

a �nite dimensional �xed point problem, are found e.g in [19, 27, 28]. However, the

corresponding return maps in [27, 28] are contractions, and the obtained periodic orbits
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are stable. This is not the case here, thus we cannot apply any contraction mapping

theorem.

Section 4 shows that the hyperbolicity of the �xed points of the 3-dimensional maps of

Section 3 guarantees the hyperbolicity of the corresponding LSOP solutions of Eq. (1.1)

with µ = 1 and f = f 7,ε, ε > 0 small, see Proposition 4.3. The key fact toward the

proof is that a small neighborhood of the �xed point Σ (a∗ (ε) , ε) in a hyperplane of

C is mapped into the 3-dimensional submanifold Σ (U3
ε × {ε}) by a suitable Poincaré

return map (Proposition 4.1). The hyperbolicity of these LSOP solutions together

with a result in [19] guarantee the existence of LSOP solutions for all nonlinearities f

satisfying (H1) that are close to f 7,ε, ε > 0 small, in C1-norm. Thereby the existence

of the two LSOP solutions in Theorem 1.1 is veri�ed.

The conception that the hyperbolicity of certain periodic orbits can be veri�ed via

showing the hyperbolicity of �xed points of suitable �nite dimensional maps also appears

in paper [12] of Kennedy. This paper considers state-dependent delay equations with

feedback functions that are close to f (x) = −sgn (x) outside a small neighborhood of

0.

Section 5 contains preparatory results toward the exact number of LSOP solutions.

Propositions 5.1 and 5.2 prove monotone and symmetry properties of periodic solutions

of (1.1). The C1-smoothness and strict monotonicity from [22] is weakened slightly. The

technical result of Proposition 5.3 shows that all LSOP solutions of (1.1) with µ = 1

and f = f 7,ε, ε > 0 small, have nice regulatory properties.

Section 6 studies the exact number of LSOP solutions for the step function nonlin-

earity fK,0, K > 0, then for f 7,ε, ε > 0 small, and �nally for functions f close to f 7,ε.

Summarizing the above results, Theorem 1.1 is obtained.

The next section excludes the existence of periodic solutions oscillating rapidly around

0.

Section 8 completes the proof of Theorem 1.2. The existence of heteroclinic orbits

from Op, where p is the LSOP solution with smaller range, is based on the fact that

the local unstable manifold Wu (p0) of a Poincaré return map at its �xed point p0 is

2-dimensional, and it is separated into two parts by its 1-dimensional leading unsta-

ble manifold Wu
1 (p0). Discrete Lyapunov functionals around ξ−1, 0, ξ1, information on

eigenfunctions of the derivative of the Poincaré map associated with the two eigenvalues

outside the unit circle, monotone property of the semi�ow, and elementary topological

arguments yield the result.
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2. Preliminaries

Notation. The natural phase space for Eq. (1.1) is the space C = C ([−1, 0] ,R)

of continuous real functions de�ned on [−1, 0] equipped with the supremum norm

‖ϕ‖ = sup−1≤s≤0 |ϕ (s)|. C1 = C1 ([−1, 0] ,R) is the space of continuously di�eren-

tiable functions from [−1, 0] into R with norm ‖ϕ‖C1 = ‖ϕ‖+ ‖ϕ′‖.
For D ⊆ R open, C1

b (D,R) denotes the space of bounded continuously di�er-

entiable functions g : D → R with bounded �rst derivative together with norm

‖g‖C1
b

= supx∈D |g(x)|+ supx∈D |g′(x)|.
For Banach spaces E and F over R, the space of bounded linear operators is denoted

by L (E,F ).

For a simple closed curve c : [a, b] → R2, int (c) and ext (c) denote the interior and

exterior, i. e., the bounded and unbounded component of R2 \ c ([a, b]), respectively.

If U ⊂ Rm, m ≥ 1, then bdU is for the boundary of U .

For an interval I ⊂ R, we de�ne

I + [−1, 0] = {t ∈ R : t = t1 + t2 with t1 ∈ I, t2 ∈ [−1, 0]} .

If I ⊂ R is an interval, u : I → R is continuous, then for [t−1, t] ⊂ I, ut ∈ C is given

by ut(s) = u(t+ s), −1 ≤ s ≤ 0.

De�nition of solution. In the sequel we consider Eq. (1.1) with smooth and non-

smooth (e.g. step function) nonlinearities and linear variational equations as well. This

requires a slightly more general form of equation and a more general de�nition of

solutions.

Consider the equation

(2.1) ẏ (t) = g (t, yt)
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assuming that g : R × C → R satis�es the condition: for each interval I ⊂ R and

each continuous function u : I + [−1, 0] → R, the map I 3 t 7→ g (t, ut) ∈ R is

locally integrable (i. e., integrable on compact subintervals of I). Then for given t0 ∈ R
and 0 < a ≤ ∞, a function y : [t0 − 1, t0 + a) → R is called a solution of (2.1) on

[t0 − 1, t0 + a) if y is continuous and

y (t) = y (t0) +

ˆ t

t0

g (s, ys) ds

holds for all t ∈ [t0, t0 + a). A function y : R→ R is a solution of Eq. (2.1) on R if it is

a solution of (2.1) on [t0 − 1,∞) for all t0 ∈ R.
If y : [t0 − 1, t0 + a) → R is a solution of (2.1) on [t0 − 1, t0 + a) and for some

(α, β) ⊂ (t0, t0 + a), the map (α, β) 3 t 7→ g (t, yt) ∈ R is continuous, then it is clear

that y is continuously di�erentiable on (α, β), moreover, (2.1) holds for all t ∈ (α, β).

If y : [t0 − 1, t0 + a)→ R is a solution of (2.1), then obviously y is absolutely contin-

uous on [t0, t0 + a), and (2.1) holds almost everywhere on [t0, t0 + a).

In the particular case

g (t, ϕ) = −µϕ (0) + h (t, ϕ (−1)) , (t, ϕ) ∈ R× C,

for some µ ∈ R and h : R × R → R so that g satis�es the above local integrability

condition, for each ϕ ∈ C a unique solution y : [−1,∞)→ R with y0 = ϕ can be given

by the method of steps. Set y (t) = ϕ (t) for −1 ≤ t ≤ 0. Suppose that a continuous

y : [−1, n] is already given for some n ≥ 0. Then for t ∈ [n, n+ 1], de�ne

y (t) = e−µ(t−n)y (n) +

ˆ t

n

e−µ(t−s)h (s, y (s− 1)) ds.

Then y|[n,n+1] is absolutely continuous and (2.1) holds almost everywhere on [n, n+ 1].

It is easy to see that this construction gives the unique solution yϕ : [−1,∞)→ R with

yϕ0 = ϕ.

Semi�ow. Now assume g (t, ϕ) = −µϕ (0) + f (ϕ (−1)) with µ ∈ R and f ∈ C1 (R,R).

Then the solutions of Eq. (1.1) de�ne the continuous semi�ow

Φ : R+ × C 3 (t, ϕ) 7→ xϕt ∈ C.

All maps Φ (t, ·) : C → C, t ≥ 1, are compact and all maps C 3 ϕ 7→ Φ (t, ϕ) ∈ C1,

t ≥ 1, are continuous.

A set M ⊂ C is called positively invariant under Φ if Φ (t,M) ⊆M for all t ≥ 0.
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Limit sets. If ϕ ∈ C and xϕ : [−1,∞) → R is a bounded solution of Eq. (1.1), then

the ω-limit set

ω (ϕ) = {ψ ∈ C : there exists a sequence (tn)∞0 in [0,∞)

with tn →∞ and Φ (tn, ϕ)→ ψ as n→∞}

is nonempty, compact, connected and invariant in the sense that for every ψ ∈ ω (ϕ),

there is a solution x : R→ R with x0 = ψ and xt ∈ ω (ϕ) for all t ∈ R. For a solution

x : R→ R such that x|(−∞,0] is bounded, the α-limit set

α (x) = {ψ ∈ C : there exists a sequence (tn)∞0 in R

with tn → −∞ and xtn → ψ as n→∞}

is nonempty, compact, connected and invariant.

Poincaré return maps. Assume that f ∈ C1 (R,R) in Eq. (1.1). Let p : R→ R be a

periodic solution of Eq. (1.1), and ω > 1 be the minimal period of p. Let a closed linear

subspace H ⊂ C of codimension 1 be given so that p0 ∈ H and ṗ0 /∈ H. An application

of The implicit function theorem yields a convex bounded open neighborhood N of 0

in H, ν ∈ (0, ω) and a C1-map γ : {p0} + N → (ω − ν, ω + ν) with γ (p0) = ω so that

for each (t, ϕ) ∈ (ω − ν, ω + ν) × ({p0}+N), segment xϕt belongs to H if and only if

t = γ(ϕ) ([6], Appendix I in [17], [19]). The Poincaré map is set

P : {p0}+N 3 ϕ 7→ Φ (γ(ϕ), ϕ) ∈ H.

Then P is continuously di�erentiable and has �xed point p0. In addition, P depends

smoothly on the right hand side of Eq. (1.1) [19].

Map DP (p0) : H → H is a compact operator. The spectrum σ of DP (p0) is

countable with one possible accumulation point at 0. All the nonzero points in σ are

eigenvalues of �nite multiplicity. Periodic solution p is said to be hyperbolic if p0 is a

hyperbolic �xed point of P , that is DP (p0) has no eigenvalues on the unit circle in C.
This hyperbolicity is the same as the one de�ned by the spectrum of the monodromy

operator ([6, 17]). The nonzero points of σ and 1 are called Floquet multipliers.

The following proposition is a particular case of a more general result of Lani-Wayda

[19].

Proposition 2.1. Assume that f ∈ C1 (R,R) and p is a hyperbolic periodic solution of

Eq. (1.1) with minimal period ω > 1. Let D ⊂ R be open with {p (t) : t ∈ [0, ω)} ⊂ D.

Then there exist an open ball B ⊂ C1
b (D,R) centered at f , an open neighborhood V ⊂ N
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of 0 in H and a C1-function χ : B → {p0} + V ⊂ H with χ (f) = p0 such that for

g ∈ B, the solution x
χ(g)

of Eq.(1.1) with initial value χ (g) is periodic (and therefore

can be de�ned on R). The minimal period of x
χ(g)

is in (ω − ν, ω + ν). If ϕ ∈ {p0}+V

is the initial segment of any periodic solution of ẋ(t) = −µx(t) + g (x(t− 1)) for some

g ∈ B with minimal period in (ω − ν, ω + ν), then ϕ = χ (g). If ‖g − f‖C1
b
→ 0, then

χ (g)→ χ (f) = p0 in C.

In this paper we are going to set D = R.

A discrete Lyapunov functional. As Mallet-Paret and Sell in [21], we de�ne a

discrete Lyapunov functional V : C \ {0} → 2N∪{∞}. For ϕ ∈ C \ {0} , set sc (ϕ) = 0

if ϕ ≥ 0 or ϕ ≤ 0, otherwise de�ne

sc (ϕ) = sup
{
k ∈ N \ {0} : there exist a strictly increasing sequence

(si)
k
0 ⊆ [−1, 0] with ϕ (si−1)ϕ (si) < 0 for i ∈ {1, 2, .., k}

}
.

Then set

V (ϕ) =

{
sc (ϕ) , if sc (ϕ) is even or ∞,
sc (ϕ) + 1, if sc (ϕ) is odd.

Also de�ne

R =
{
ϕ ∈ C1 : ϕ (0) 6= 0 or ϕ̇ (0)ϕ (−1) > 0,

ϕ (−1) 6= 0 or ϕ̇ (−1)ϕ (0) < 0, all zeros of ϕ are simple} .

The linear map π : C → R2 is given by π (ϕ) = (ϕ (0) , ϕ (−1)).

V has the following lower semi-continuity and continuity property (for a proof, see

[17, 22]).

Lemma 2.2. For each ϕ ∈ C \ {0} and (ϕn)∞0 ⊂ C \ {0} with ϕn → ϕ as n → ∞,

V (ϕ) ≤ lim infn→∞ V (ϕn). For each ϕ ∈ R and (ϕn)∞0 ⊂ C1\{0} with ‖ϕn − ϕ‖C1 → 0

as n→∞, V (ϕ) = limn→∞ V (ϕn) <∞.

The next result explains why V is called a Lyapunov functional.

Lemma 2.3. Assume that µ ∈ R, J ⊂ R is an interval, β : J → R is nonnegative,

z : J + [−1, 0]→ R is continuous, and z is di�erentiable on J . Suppose that

(2.2) ż (t) = −µz (t) + β (t) z (t− 1)

holds for all t > inf J in J . Then the following statements hold.

(i) If t1, t2 ∈ J with t1 < t2 and zt2 6= 0, then V (zt1) ≥ V (zt2).

11



(ii) If t, t − 2 ∈ J , z (t− 1) = z (t) = 0 but zt 6= 0, then either V (zt) = ∞ or

V (zt−2) > V (zt).

(iii) If β is positive on J , t ∈ J , t − 3 ∈ J , z (t) 6= 0 for some t ∈ J + [−1, 0] and

V (zt−3) = V (zt) <∞, then zt ∈ R.
(iv) If J = R, β is bounded and measurable, z is bounded and zt 6= 0 for all t ∈ R, then
V (zt) <∞ for all t ∈ R.

Proof. For a positive and continuous β, assertions (i), (ii) and (iii) are shown in [17]

and [21]. The proof of Lemma VI.2 in [17] can be modi�ed in a straightforward manner

to cover our slightly more general case. Therefore the details are omitted here.

Statement (iv) is a corollary of Theorem 2.4 in [21] with δ∗ = 1, N = 0, f 0 (t, u, v) =

−µu+ β (t) v. Property I of Theorem 2.4 in [21] holds as β is bounded. �

If nonlinearity f is a C1−smooth, nondecreasing function and x, x̂ : J + [−1, 0]→ R
are solutions of Eq. (1.1), then Lemma 2.3 (i) and Lemma 2.3 (ii) can be applied for

z = x− x̂ with the nonnegative continuous function

β : J 3 t 7→
ˆ 1

0

f ′ (sx (t− 1) + (1− s) x̂ (t− 1)) ds ∈ [0,∞) .

In addition, if f ′ > 0 on R, then β is positive, which condition is needed in Lemma 2.3

(iii).

Proposition 2.4. Assume µ ∈ R, f : R → R is nondecreasing, bounded and either it

is continuously di�erentiable on R or there exist u1 < u2 < ... < uN with N ≥ 1 so

that the restrictions of f to the intervals (−∞, u1], [u1, u2],.., [uN−1, uN ], [uN ,∞) are

continuously di�erentiable. Let x : R→ R and x̃ : R→ R be di�erent periodic solutions

of (1.1). Then t 7→ V (xt − x̃t) is �nite and constant. Furthermore, π (xt − x̃t) 6= (0, 0)

for all t ∈ R.

Proof. The di�erence z = x− x̃ satis�es equation (2.2) with

β (t) =

{
f(x(t−1))−f(x̃(t−1))

x(t−1)−x̃(t−1)
if x (t− 1) 6= x̃ (t− 1) ,

D+f (x (t− 1)) otherwise,

where D+f denotes the right hand side derivative of f . Then β is bounded, measurable

and nonnegative. Clearly, zt 6= 0 for all t ∈ R. Lemma 2.3 (iv) implies V (zt) < ∞ for

all t ∈ R.
Let ω and ω̃ denote the minimal periods of x and x̃, respectively. If ω̃ = 0 or ω/ω̃

is rational, then z is periodic. Thus Lemma 2.3 (i) yields that t 7→ V (zt) is constant.

If ω/ω̃ is irrational, then one may choose sequences (nl)
∞
1 ⊂ Z and (kl)

∞
1 ⊂ Z with
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nl →∞ and kl →∞ as l→∞ so that nlω/ω̃−kl → 0 as l→∞. Fix t ∈ R arbitrarily.

As for all s ∈ [−1, 0],

zt+nlω (s) = xt+nlω (s)− x̃t+nlω (s) = xt (s)− x̃t+nlω−klω̃ (s)

= x (t+ s)− x̃
(
t+ ω̃

(
nl
ω

ω̃
− kl

)
+ s
)
,

we see that zt+nlω (s) tends to zt (s) = x (t+ s) − x̃ (t+ s) as l → ∞ uniformly in

s ∈ [−1, 0]. So Lemma 2.2 implies

V (zt) ≤ lim inf
l→∞

V (zt+nlω) .

As R 3 u 7→ V (zu) ∈ 2N∪{∞} is monotone nonincreasing by Lemma 2.3 (i), we obtain

that V (zt) = V (zt+u) for all u ≥ 0. As t is arbitrary, we conclude that t 7→ V (zt) is

constant also in this case.

The second statement now follows from Lemma 2.3 (ii). �

Notation regarding periodic solutions. If ξ ∈ R is a zero of R 3 ξ 7→ −µξ+f (ξ) ∈
R, then we say that a solution x : [−1,∞) → R of Eq. (1.1) oscillates around ξ if the

set of zeros of x − ξ is not bounded from above. Solution x : R → R is called slowly

oscillatory around ξ if V
(
xt − ξ̂

)
= 2 for each t ∈ R, where ξ̂ (s) = ξ, s ∈ [−1, 0]. A

slowly oscillatory solution is de�ned to be slowly oscillatory around 0. We say x : R→ R
is rapidly oscillatory around ξ if V

(
xt − ξ̂

)
≥ 4 for all t ∈ R.

Assume x : R → R is a periodic solution of (1.1) with minimal period ω. We say

x is of special symmetry if the relation x (t+ ω/2) = −x (t) holds for all t ∈ R. Set

t0 < t1 < t0 +ω so that x (t0) = mint∈R x(t) and x (t1) = maxt∈R x(t). Solution x is said

to be of monotone type if x is nondecreasing on [t0, t1] and nonincreasing on [t1, t0 + ω].

Assume that 0 is in the range of a periodic solution x : R → R of (1.1). Then x is

normalized if x(−1) = 0 and for some η > 0, x(s) > 0 for all s ∈ (−1,−1 + η).

In case f ∈ C1 (R,R) with f ′ (ξ) ≥ 0 for all ξ ∈ R, and ξ−2 < ξ−1 < ξ0 = 0 < ξ1 < ξ2

are �ve consecutive zeros of R 3 ξ 7→ −µξ + f (ξ) ∈ R, a periodic solution x : R → R
of Eq. (1.1) is called a large amplitude periodic solution if x(R) ⊃ (ξ−1, ξ1). A large-

amplitude slowly oscillatory periodic solution x : R → R will be abbreviated as an

LSOP solution. This de�nition is modi�ed for the step function

fK,0 (x) =


−K if x < −1,

0 if |x| ≤ 1,

K if x > 1
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in the following way. Solution x : R→ R of Eq. (1.1) with nonlinearity f = fK,0, K > 0,

is a large-amplitude slowly oscillatory periodic (LSOP) solution if x is of monotone type,

special symmetry, and the minimal period of x is in the open interval (1, 2).

We have the following simple observation.

Proposition 2.5. Assume µ = 1, f : R → R is continuously di�erentiable, nonde-

creasing, and

ξ−2 < ξ−1 < ξ0 = 0 < ξ1 < ξ2

are �ve consecutive zeros of ξ 7→ −ξ + f (ξ) with f ′ (ξj) < 1 < f ′ (ξk) for j ∈ {−2, 0, 2}
and k ∈ {−1, 1}. Suppose x : R→ R is a nontrivial periodic solution of Eq. (1.1) with

xt ∈ C−2,2 for all t ∈ R. Then the following statements hold. If maxt∈R x (t) > 0,

then ξ1 < maxt∈R x (t) < ξ2. If maxt∈R x (t) < 0, then ξ−1 < maxt∈R x (t) < 0.

If mint∈R x (t) > 0, then 0 < mint∈R x (t) < ξ1. If mint∈Rx (t) < 0, then ξ−2 <

mint∈R x (t) < ξ−1.

Proof. Assume x : R→ R is a periodic solution of Eq. (1.1) with xt ∈ C−2,2 for all t ∈ R
and maxt∈R x (t) > 0. Choose t∗ ∈ R so that x (t∗) = maxt∈R x (t). In case x (t∗) < ξ1

use the fact that f (x) < x for x ∈ (0, ξ1) to derive that

0 = ẋ (t∗) = −x (t∗) + f (x (t∗ − 1)) ≤ −x (t∗) + f (x (t∗)) < 0,

a contradiction. If x (t∗) = ξ1, then Proposition 2.4 implies x (t∗ − 1) < x (t∗). As f is

strictly increasing in a neighborhood of ξ1, we get that

0 = ẋ (t∗) = −x (t∗) + f (x (t∗ − 1)) < −x (t∗) + f (x (t∗)) = 0,

a contradiction. Hence x (t∗) > ξ1. One may deduce that maxt∈R x (t) < ξ2 in the same

way. We leave the veri�cation of the rest of the statements also to the reader. �

Note that the conditions of the previous proposition are ful�lled if µ = 1 and (H1)

holds for f .

Boundedness. It is a direct consequence of the next proposition that if f ∈ C (R,R)

is bounded with supx∈R |f(x)| ≤ M and p : R → R is a periodic solution of (1.1) so

that 0 is in the range of p, then maxt∈R |p(t)| < M/µ.

Proposition 2.6. (Boundedness) If µ > 0, f : R→ R is continuous, supx∈R |f(x)| ≤
M and x : [t0 − 1,∞) → R is a solution of (1.1) with x (t0) = 0, then |x (t)| < M/µ

for all t > t0.
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Proof. Let u : R→ R be the solution of the initial value problemu̇(t) = −µu(t) +M, t ∈ R,

u (t0) = 0.

Then u (t) = M
(
1− e−µ(t−t0)

)
/µ for t ∈ R. Clearly, if x : [t0 − 1,∞)→ R is a solution

of (1.1), then ẋ (t) ≤ −µx(t) + M , t ∈ R. In consequence, Corollary 6.2 of Chapter I

in [10] implies that for t > t0, x (t) ≤ u (t) < M/µ. The lower bound can be veri�ed

analogously. �

The global attractor. In the remaining part of this section, assume (H1). As f ′ (x) >

0 for all x ∈ R, backward continuation is unique, if it exists. Hence Φ (t, ·) : C → C,

t ≥ 0, are injective (see also [17]), and for every ϕ ∈ C there is at most one solution

x : R → R of Eq. (1.1) with x0 = ϕ. Whenever such a solution on R exists, it is also

denoted by xϕ.

The maps Φ (t, ·) : C → C, t ≥ 0, are monotone with respect to the pointwise

ordering on C [17, 26]. As a result, the sets

C−2,2 = {ϕ ∈ C : ξ−2 ≤ ϕ (s) ≤ ξ2 for all s ∈ [−1, 0]} ,

C−2,0 = {ϕ ∈ C : ξ−2 ≤ ϕ (s) ≤ 0 for all s ∈ [−1, 0]} ,

C0,2 = {ϕ ∈ C : 0 ≤ ϕ (s) ≤ ξ2 for all s ∈ [−1, 0]}

are positively invariant under the semi�ow Φ.

There exists a global attractor of the semi�ow Φ|[0,∞)×C−2,2 , i. e., a nonempty, compact

set A ⊂ C−2,2, that is invariant in the sense that Φ (t,A) = A for all t ≥ 0 and that

attracts bounded sets in the sense that for every bounded set B ⊂ C−2,2 and for every

open set U ⊃ A, there exists t ≥ 0 with Φ ([t,∞)×B) ⊂ U . Global attractors are

uniquely determined ([9]).

It can be shown that

A = {ϕ ∈ C−2,2 : there is a solution x : R→ R of Eq. (1.1)

with x (R) ⊂ [ξ−2, ξ2] and ϕ = x0} ,

see [16, 20, 24]. The compactness of A, its invariance property and the injectivity of

the maps Φ (t, ·) : C → C, t ≥ 0, combined permit to verify that the map

[0,∞)×A 3 (t, ϕ) 7→ Φ (t, ϕ) ∈ A
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extends to a continuous �ow ΦA : R × A → A; for every ϕ ∈ A and for all t ∈ R
we have ΦA (t, ϕ) = xt with a uniquely determined solution x : R → R of Eq. (1.1)

satisfying x0 = ϕ.

Note that we have A = Φ (1,A) ⊂ C1; A is a closed subset of C1. Using the �ow ΦA

and the continuity of the map

C 3 ϕ 7→ Φ (1, ϕ) ∈ C1,

one obtains that C and C1 de�ne the same topology on A.
Analogously, we de�ne A−2,0 and A0,2 as the global attractors of the restrictions

Φ|[0,∞)×C−2,0 and Φ|[0,∞)×C0,2 , respectively. Clearly, A−2,0 ⊂ C−2,0 and A0,2 ⊂ C0,2.

Equilibrium points, periodic solutions and homoclinic connections. All equi-

librium points ξ̂ ∈ C of Φ are given so that ξ̂ (s) = ξ, −1 ≤ s ≤ 0, and ξ satis�es

−µξ + f (ξ) = 0. The smoothness of f implies that each map Φ (t, ·), t ≥ 0, is continu-

ously di�erentiable. For an equilibrium point ξ̂ ∈ C, the operators D2Φ
(
t, ξ̂
)

: C → C,

t ≥ 0, form a strongly continuous semigroup. The spectrum of the generator of the

semigroup consists of the solutions λ ∈ C of the characteristic equation

λ+ µ− αe−λ = 0

with α = f ′ (ξ). If α > 0, then there is exactly one real λ0 in the spectrum, the rest of

the spectrum is a sequence of complex conjugate pairs
(
λj, λj

)∞
1

with

λ0 > Reλ1 > Reλ2 > ... > Reλn > ...

and

(2j − 1) π < Imλj < 2jπ for 1 ≤ j ∈ N.

If 0 < f ′ (ξ) < µ, then λ0 < 0 and ξ̂ is stable. If f ′ (ξ) > µ > 0, then λ0 > 0 and ξ̂ is

unstable. If µ > 0 and

(2.3) f ′ (ξ) >
µ

cos θµ
for θµ ∈ (3π/2, 2π) with θµ = −µ tan θµ

holds, then Reλ1 > 0 . In this case if ϕ ∈ A belongs to the stable set

Ws
(
ξ̂
)

=
{
ϕ : ω (ϕ) exists and ω (ϕ) = ξ̂

}
of ξ̂ and ϕ 6= ξ̂, then V

(
ϕ− ξ̂

)
> 2, see Lemma 3.9 in [24] for a proof.

By hypothesis (H1), ξ̂−2, ξ̂−1, 0̂, ξ̂1, ξ̂2 are the only equilibrium points of Φ in C−2,2.

In addition, ξ̂−2, 0̂ and ξ̂2 are stable, ξ̂−1 and ξ̂1 are unstable.

We are going to use the following additional hypothesis.
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(H2) For j ∈ {−1, 1} and θ ∈ (3π/2, 2π) with θ = −µ tan θ, the inequality

f ′(ξj) > µ/ cos θ holds.

Note that (H2) is simply condition (2.3) for ξ = ξ1 and ξ = ξ−1.

It is shown in Chapter 6 of [17] that if (H1) and (H2) hold, then at least one periodic

solution appears with the following two properties: it has range in (0, ξ2), and it is

slowly oscillatory around ξ1. Analogously, there is at least one periodic solution that

is slowly oscillatory around ξ−1 and has range in (ξ−2, 0). It is not excluded that more

solutions exist with the above properties. It can be proved that the minimal periods of

these solutions are in (1, 2). The following proposition holds.

Proposition 2.7. If conditions (H1) and (H2) are satis�ed by f , then there exist

periodic solutions x1 : R → R and x−1 : R → R of Eq. (1.1) oscillating slowly around

ξ1 and ξ−1 with ranges in (0, ξ2) and (ξ−2, 0), respectively, so that the ranges x1(R)

and x−1(R) are maximal in the sense that x1(R) ⊃ x(R) for all periodic solutions x

oscillating slowly around ξ1 with ranges in (0, ξ2); and analogously for x−1.

Proof. From the paper [22] of Mallet-Paret and Sell we know that the map

π : C 3 ϕ 7→ (ϕ (0) , ϕ (−1)) ∈ R2

takes the nontrivial periodic orbits of Eq. (1.1) into simple closed curves in R2, and the

images of di�erent periodic orbits are disjoint curves in R2. Hence for two periodic

solutions x̂ and x̃ of Eq. (1.1) oscillating slowly around ξ1, either {πx̂t : t ∈ R} belongs
to the interior of {πx̃t : t ∈ R}, or vice versa. Hence it is not di�cult to see that either

x̂ (R) ⊇ x̃ (R) or x̂ (R) ⊆ x̃ (R) follows.

Suppose for contradiction that there is no periodic solution oscillating slowly around

ξ1 with the stated properties. Then there exists a sequence of periodic solutions xn :

R → R of (1.1) with minimal period ωn ∈ (1, 2), 1 ≤ n ∈ N, so that xn is slowly

oscillatory around ξ1, xn (R) ⊆ xn+1 (R) ⊂ (0, ξ2) for n ≥ 1, and there exists no

solution x : R → R oscillating slowly around ξ1 with xn (R) ⊆ x (R) ⊂ (0, ξ2) for each

n ≥ 1.

As xn (t) ∈ (0, ξ2) for all t ∈ R and f is bounded on (0, ξ2), Eq. (1.1) gives a uniform

upper bound for |ẋn| on R, n ≥ 1. Applying the Arzelà�Ascoli theorem and choosing

a subsequence if necessary, we obtain that there exist ω∗ ∈ [1, 2] and a continuous

function x∗ : R → R such that ωn → ω∗ and xn converges to x∗ as n → ∞ uniformly

on each compact subset of the real line. It is easy to see that x∗ is periodic with period

ω∗. Also, we �nd that

ẋn (t)→ −µx∗ (t) + f (x∗(t− 1)) as n→∞
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uniformly on each compact subinterval of the real line. It follows that x∗ is di�erentiable

and satis�es Eq. (1.1) for all t ∈ R.
As xn (R) ⊆ xn+1 (R) ⊂ (0, ξ2) for all n ≥ 1, necessarily

0 ≤ min
t∈R

x∗ (t) ≤ min
t∈R

xn (t) < ξ1 < max
t∈R

xn (t) ≤ max
t∈R

x∗ (t) ≤ ξ2

for all n ≥ 1. We claim that mint∈R x
∗ (t) > 0. Indeed, if tmin ∈ R is chosen so that

x∗ (tmin) = mint∈R x
∗ (t) = 0, then

f (x∗ (tmin − 1)) = ẋ∗ (tmin) + µx∗ (tmin) = 0

and hypothesis (H1) implies x∗ (tmin − 1) = 0, a contradiction to Lemma 2.3 (ii), (iv)

and the periodicity of x∗. Similarly, maxt∈R x
∗ (t) < ξ2.

Proposition 2.4 implies t 7→ V
(
x∗t − ξ̂1

)
is �nite and constant. It follows from Lemma

2.2 that

V
(
x∗t − ξ̂1

)
≤ lim inf

n→∞
V
(
xnt − ξ̂1

)
= 2

for all t ∈ R and n ≥ 1. However, V
(
x∗t − ξ̂1

)
> 0 as function x∗−ξ1 has sign changes.

So V
(
x∗t − ξ̂1

)
= 2 for all t ∈ R.

We conclude that solution x∗ is periodic, slowly oscillatory around ξ1, has range in

(0, ξ2), and xn (R) ⊆ x (R) ⊂ (0, ξ2) for each n ≥ 1, a contradiction to our initial

assumption.

The proof is analogous for x−1. �

Note that under hypothesis (H1) there is no homoclinic orbit to ξ̂j, j ∈ {−2, 0, 2} as
they are stable. It follows from Proposition 3.1 in [15], that there exit no homoclinic

orbits to ξ̂i, i ∈ {−1, 1}.

The Poincaré�Bendixson Theorem. Suppose that f satis�es (H1). If ϕ ∈ C−2.2,

then ω (ϕ) is either a single nonconstant periodic orbit or for each ψ ∈ ω (ϕ),

α (ψ) ∪ ω (ψ) ⊆
{
ξ̂−2, ξ̂−1, ξ̂0, ξ̂1, ξ̂2

}
,

see [22]. An analogous result holds for α (x) in case x is de�ned on R and {xt : t ≤ 0} ⊂
C−2,2.

3. LSOP Solutions For Special Nonlinearities

In the remaining part of the paper we �x µ = 1. The results can be easily modi�ed

for di�erent values of µ > 0.

Let ρ : R→ [0, 1] be a C∞-smooth function such that ρ (t) = 0 for t ≤ 0, ρ (t) = 1 for

t ≥ 1 and ρ′ (t) > 0 for t ∈ (0, 1). For given K > 0 and ε ∈ (0, 1), de�ne fK,ε : R→ R
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(Fig. 4) by

fK,ε (x) = Kρ

(
|x| − 1

ε

)
sgn (x) .

The function fK,0 : R→ R (Fig. 4) is given by

fK,0 (x) = lim
ε→0+

fK,ε (x) =


−K if x < −1,

0 if |x| ≤ 1,

K if x > 1.

Figure 4. The plot of fK,ε for ε > 0 small and for ε = 0

Note that for all ε ∈ (0, 1) and K > 1 + ε, the function ξ 7→ −ξ + fK,ε (ξ) admits

exactly �ve zeros

ξ−2 < ξ−1 < ξ0 < ξ1 < ξ2

with ξ−2 = −K, ξ−1 ∈ (−1− ε,−1), ξ0 = 0, ξ1 ∈ (1, 1 + ε) and ξ2 = K.

Consider the delay di�erential equation

(3.1) ẋ (t) = −x (t) + fK,ε (x (t− 1)) .

Set Jεi =
(
fK,ε

)−1
(i) for i ∈ {−K, 0, K}.

If t0 < t1 and x : [t0 − 1, t1] → R is a solution of Eq. (3.1) such that for some

i ∈ {−K, 0, K}, we have x (t− 1) ∈ Jεi for all t ∈ (t0, t1), then Eq. (3.1) reduces to the

ordinary di�erential equation

ẋ (t) = −x (t) + i

on the interval (t0, t1), and thus

(3.2) x(t) = i+ (x (t0)− i) e−(t−t0) for t ∈ [t0, t1] .
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We say that a function x : [t0, t1]→ R is of type (i) on [t0, t1] for some i ∈ {−K, 0, K}
if (3.2) holds. If x : [t0 − 1, t1]→ R is a solution of Eq. (3.1) so that x is type of (i) on

[t0 − 1, t1 − 1] for some i ∈ {−K, 0, K}, then with j = x (t0 − 1) the equality

(3.3) x (t) = x (t0) e−(t−t0) +

ˆ t−t0

0

e−(t−t0−s)fK,ε
(
i+ (j − i) e−s

)
ds

holds for all t ∈ [t0, t1]. This motivates the next de�nition. A function x : [t0, t1] → R
is of type (i, j) on [t0, t1] with i ∈ {−K, 0, K} and j ∈ R if (3.3) holds for all t ∈ [t0, t1].

In the rest of the section assume that K > 3.

Let

T (ε) = ln(1 + ε), T̂ (ε) = ln
K − 1

K − 1− ε
, T̃ (ε) = ln

K + 1 + ε

K + 1
denote the times that a function of type (0) needs to decrease from 1 + ε to 1 or to

increase from −1 − ε to −1, a function of type (−K) needs to decrease from −1 to

− (1 + ε), a function of type (−K) needs to decrease from 1 + ε to 1, respectively.

Clearly, T (0) = T̂ (0) = T̃ (0) = 0 .

3.1. An LSOP solution for nonlinearity fK,ε. De�ne

U1 =
{

(a, ε) ∈ (0, 1)3 × [0, 1) : a = (a1, a2, a3) , a1 + a2 + a3 + 2T (ε) + T̂ (ε) < 1
}
.

It is easy to see that U1 is open in (0, 1)3 × [0, 1).

For given (a, ε) ∈ U1, set

s0 = −1,

s1 = s0 + a1 = −1 + a1,

s∗1 = s1 + T (ε) = −1 + a1 + T (ε) ,

s2 = s∗1 + a2 = −1 + a1 + T (ε) + a2,

s∗2 = s2 + T̂ (ε) = −1 + a1 + T (ε) + a2 + T̂ (ε) ,

s3 = s∗2 + a3 = −1 + a1 + T (ε) + a2 + T̂ (ε) + a3,

s∗3 = s3 + T (ε) = −1 + a1 + T (ε) + a2 + T̂ (ε) + a3 + T (ε) .

Clearly si = s∗i , i ∈ {1, 2, 3}, for ε = 0.
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De�ne h = h (a, ε) : R→ R (Fig. 5) by

h (t) =



K if t < s1,

fK,ε
(
(1 + ε) e−(t−s1)

)
if s1 ≤ t < s∗1,

0 if s∗1 ≤ t < s2,

fK,ε
(
−K + (K − 1) e−(t−s2)

)
if s2 ≤ t < s∗2,

−K if s∗2 ≤ t < s3,

fK,ε
(
− (1 + ε) e−(t−s3)

)
if s3 ≤ t < s∗3,

0 if s∗3 ≤ t.

Figure 5. The plot of h (a, ε)

De�ne the map Σ : U1 → C by

(3.4) Σ (a, ε) (t) = e−t
ˆ t

−1

esh (a, ε) (s) ds (−1 ≤ t ≤ 0) .

We look for initial segments of LSOP solutions in the set Σ (U1) ⊂ C.

Notice that Σ (a, ε) is the unique solution of the initial value problem

(3.5)

ẏ (t) = −y (t) + h (a, ε) (t) (−1 ≤ t ≤ 0)

y (−1) = 0.

Proposition 3.1. Σ : U1 → C is continuous.

Proof. The continuity of the map

U1 3 (a, ε) 7→ h (a, ε) |[−1,0] ∈ L1 (0, 1)

follows in a straightforward way from the de�nition of h (a, ε). Applying formula (3.4),

the continuity of Σ is obvious. �
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For each �xed (a, ε) ∈ U1 ∩ (0, 1)3 × (0, 1), the map [−1, 0] 3 t 7→ h (a, ε) (t) ∈ R is

C1-smooth with derivative h′ (a, ε) (t).

For given ε ∈ [0, 1), de�ne

U1
ε =

{
a ∈ (0, 1)3 : (a, ε) ∈ U1

}
.

The de�nition of U1 implies that U1
ε is open.

If a ∈ U1
ε and |δ| < 1

2
min {a1, a2, a3}, then

h (a1 + δ, a2, a3, ε) (t) = h (a, ε) (t− δ) for t ∈ [−1, 0] ,

h (a1, a2 + δ, a3, ε) (t) =

h (a, ε) (t) for t ∈
[
−1, s∗1 + a2

2

]
,

h (a, ε) (t− δ) for t ∈
[
s∗1 + a2

2
, 0
]
,

h (a1, a2, a3 + δ, ε) (t) =

h (a, ε) (t) for t ∈
[
−1, s∗2 + a3

2

]
,

h (a, ε) (t− δ) for t ∈
[
s∗2 + a3

2
, 0
]
.

Now it is clear that we have

∂

∂ai
h (a, ε) (t) =

0 for t ∈ [−1, si]

−h′ (a, ε) (t) for t ∈ [si, 0]

for i ∈ {1, 2, 3}. De�ne ψi ∈ C, i ∈ {1, 2, 3}, by

ψi (t) = ψi (a, ε) (t) = e−t
ˆ t

−1

es
∂

∂ai
h (a, ε) (s) ds (t ∈ [−1, 0]) .

Obviously ψ1, ψ2 and ψ3 are linearly independent elements of C. With the above

notation, we obtain the following C1-smoothness property of Σ.

Proposition 3.2. For each �xed ε ∈ (0, 1), the map U1
ε 3 a 7→ Σ (a, ε) ∈ C is C1-

smooth with DaΣ (a, ε) (b) = b1ψ1 + b2ψ2 + b3ψ3 for all a ∈ U1
ε and b = (b1, b2, b3) ∈ R3.

Proof. Σ (a, ε) is the unique solution of the initial value problem (3.5). Hence the claim

of the proposition follows from the di�erentiability of solutions of ordinary di�erential

equations with respect to the parameters. �

Let

U2 =
{

(a, ε) ∈ U1 : Σ (a, ε) (s) > 1 + ε for s ∈ [s1, s
∗
1] ,

|Σ (a, ε) (s)| < 1 for s ∈ [s2, s
∗
2] ,

Σ (a, ε) (s) < −1− ε for s ∈ [s3, s
∗
3]} .

Proposition 3.1 and the de�nition of U2 imply that U2 is open in (0, 1)3 × [0, 1).
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For (a, ε) ∈ U2, consider the solution x = xΣ(a,ε) : [−1,∞)→ R of Eq. (3.1).

t

t
1

t2 t3

t4

5

t7

t8

+1

t4

t3

t2

t8t7

t
5

+1

+1

t6

t
1

+1

+1

x

t

-1 0

t6

s
1
s
1

* s
2
s
2

* s
3
s
3

*

+1

+1

+1

+1

τ

τ

ε

ε1+

1

-1
-1-

Figure 6. Solution x
Σ(a,ε)

of Eq. (3.1)

By the de�nition of U2, there exist t1, t2, ..., t6 in [−1, 0] such that

−1 < t1 ≤ t2 < s1 ≤ s∗1 < t3 ≤ t4 < s2 ≤ s∗2 < t5 ≤ t6 < s3 ≤ s∗3

and

x (t1) = 1, x (t2) = 1 + ε, x (t3) = 1 + ε, x (t4) = 1, x (t5) = −1, x (t6) = −1− ε

(see Fig. 6).

For ε ∈ (0, 1), introduce

c1 (ε) =

ˆ T (ε)

0

esfK,ε
(
(1 + ε) e−s

)
ds, c2 (ε) =

ˆ T̂ (ε)

0

esfK,ε
(
K − (K − 1) e−s

)
ds.

These integrals appear in the explicit evaluation of a return map. Observe that

c1 (ε) =

ˆ 1

0

ε (1 + ε)

(1 + εu)2Kρ (u) du (ε ∈ (0, 1)) ,

c2 (ε) =

ˆ 1

0

ε

(K − 1− εu)2K (K − 1) ρ (u) du (ε ∈ (0, 1)) .

From the last two equalities it is elementary to show that with the extension c1 (0) = 0,

c2 (0) = 0 of c1, c2 from (0, 1) to [0, 1), the functions c1 and c2 are C1-smooth on [0, 1).

We also need the following integrals:
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I1 =

ˆ s1

−1

esh (a, ε) (s) ds = K
(
es1 − e−1

)
=
K

e
(ea1 − 1) ,

I1,∗ =

ˆ s∗1

−1

esh (a, ε) (s) ds = I1 +

ˆ s∗1

s1

esfK,ε
(
(1 + ε) e−(s−s1)

)
ds

= I1 + es1c1 (ε) =
1

e
[K (ea1 − 1) + ea1c1 (ε)] ,

I2 =

ˆ s2

−1

esh (a, ε) (s) ds = I1,∗,

I2,∗ =

ˆ s∗2

−1

esh (a, ε) (s) ds = I2 +

ˆ s∗2

s2

esfK,ε
(
−K + (K − 1) e−(s−s2)

)
ds

= I2 − es2c2 (ε)

=
1

e

[
K (ea1 − 1) + ea1c1 (ε)− ea1+a2 (1 + ε) c2 (ε)

]
,

I3 =

ˆ s3

−1

esh (a, ε) (s) ds = I2,∗ +

ˆ s3

s∗2

es (−K) ds = I2,∗ +Kes
∗
2 −Kes3

=
1

e

[
K (ea1 − 1) + ea1c1 (ε)− ea1+a2 (1 + ε) c2 (ε)

+ea1+a2 (1− ea3)
(1 + ε)K (K − 1)

K − 1− ε

]
,

I3,∗ =

ˆ s∗3

−1

esh (a, ε) (s) ds = I3 +

ˆ s∗3

s3

esfK,ε
(
− (1 + ε) e−(s−s3)

)
ds

= I3 − es3c1 (ε)

=
1

e

[
K (ea1 − 1) + ea1c1 (ε)− ea1+a2 (1 + ε) c2 (ε)

+ea1+a2 (1− ea3 − ea3c1 (ε))
(1 + ε)K (K − 1)

K − 1− ε

]
.

Notice that I1, I1,∗, ..., I3, I3,∗ are C1-smooth functions from U2 into R, and

e−sjIj = Σ (a, ε) (sj) , e−s
∗
j Ij,∗ = Σ (a, ε)

(
s∗j
)

for all j ∈ {1, 2, 3}.
For t1 and t2,

e−t1
ˆ t1

−1

Kesds = 1 and e−t2
ˆ t2

−1

Kesds = 1 + ε
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hold, respectively. Hence

(3.6) t1 = ln
K

K − 1
− 1, t2 = ln

K

K − 1− ε
− 1 and t2 − t1 = ln

K − 1

K − 1− ε
= T̂ (ε) .

Proposition 3.3. The maps

U2 3 (a, ε) 7→ xΣ(a,ε) (t1 + 1) =
K − 1

K
I3,∗ ∈ R,

U2 3 (a, ε) 7→ xΣ(a,ε) (t2 + 1) =
K − 1− ε

K
I3,∗ +

K − 1− ε
K − 1

c2 (ε) ∈ R,

U2 3 (a, ε) 7→ xΣ(a,ε) (t3 + 1) = K +
K (1 + ε)

e (K − 1− ε) I1,∗

(
xΣ(a,ε) (t2 + 1)−K

)
∈ R

are continuously di�erentiable.

Proof. Since I3,∗, c2, I1,∗ are C1-smooth functions on U2, one has to show only the

stated equalities for xΣ(a,ε) (ti + 1), i ∈ {1, 2, 3}. Set x = xΣ(a,ε).

From x (s) ∈ [0, 1], −1 ≤ s ≤ t1, it follows that x is of type (0) on [0, t1 + 1]. The

de�nition of Σ (a, ε) gives that x is of type (0) on [s∗3, 0] as well. Then

(3.7) x (t) = e−(t−s∗3)x (s∗3) (s∗3 ≤ t ≤ t1 + 1) ,

and using (3.4), (3.6) and the de�nitions of I3,∗ and c2 (ε), we get

x (t1 + 1) = e−(t1+1)es
∗
3x (s∗3) =

K − 1

K
I3,∗

and

x (t2 + 1) = et1−t2x (t1 + 1) + et1−t2
ˆ t2−t1

0

esfK,ε
(
K − (K − 1) e−s

)
ds

=
K − 1− ε

K
I3,∗ +

K − 1− ε
K − 1

c2 (ε) .

As x is of type (K) on [t2 + 1, t3 + 1], we �nd that

(3.8) x (t3 + 1) = et2−t3 (x (t2 + 1)−K) +K.

From s∗1 < t3 < s2, (3.4) and h (a, ε) (t) = 0 for t ∈ [s∗1, t3], x (t3) = e−t3I1,∗ follows.

Since x (t3) = 1 + ε, one concludes that

(3.9) t3 = ln
I1,∗

1 + ε
.

Substituting t2 and t3 from (3.6) and (3.9) into (3.8), the proof is complete. �
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Now we are in a position to de�ne a further proper subset of U1. Let

U3 =
{

(a, ε) ∈ U2 : xΣ(a,ε) (t1 + 1) > −1, xΣ(a,ε) (t2 + 1) < 0, xΣ(a,ε) (t3 + 1) > 0
}
.

At this stage we do not know whether U3 6= 0. However, Proposition 3.3 and the

de�nition of U3 imply that U3 is open in (0, 1)3 × [0, 1). A typical element of Σ (U3) is

presented in Fig. 6.

The next remark plays a prominent role in proving Theorem 1.1, as well as Remark

3.14 of the next subsection.

Remark 3.4. Observe that any ϕ ∈ Σ (U3) can be characterized as follows: there exist

ε ∈ [0, 1) and

−1 < s1 ≤ s∗1 < s2 ≤ s∗2 < s3 ≤ s∗3 < 0

with

s∗1 − s1 = T (ε) , s∗2 − s2 = T̂ (ε) , s∗3 − s3 = T (ε)

so that ϕ ∈ C satis�es

(i) ϕ(−1) = 0,

(ii) ϕ is of type (K) on [−1, s1],

(iii) ϕ is of type (0, 1 + ε) on [s1, s
∗
1],

(iv) ϕ is of type (0) on [s∗1, s2],

(v) ϕ is of type (−K,−1) on [s2, s
∗
2],

(vi) ϕ is of type (−K) on [s∗2, s3],

(vii) ϕ is of type (0,−1− ε) on [s3, s
∗
3],

(viii) ϕ is of type (0) on [s∗3, 0],

(ix) ϕ (s) > 1 + ε for s ∈ [s1, s
∗
1],

(x) |ϕ (s)| < 1 for s ∈ [s2, s
∗
2],

(xi) ϕ (s) < −1− ε for s ∈ [s3, s
∗
3],

(xii) if −1 < t1 < s1 with ϕ (t1) = 1, then xϕ (t1 + 1) > −1,

(xiii) if t1 ≤ t2 < s1 with ϕ (t2) = 1 + ε, then xϕ (t2 + 1) < 0,

(xiv) if s∗1 < t3 < s2 with ϕ (t3) = 1 + ε, then xϕ (t3 + 1) > 0.

Notice that (i)-(viii) characterize ϕ ∈ Σ (U1), and (i)-(xi) characterize ϕ ∈ Σ (U2).

If (a, ε) ∈ U3, then for x = xΣ(a,ε) we have x (s∗3) < −1 − ε, x is of type (0) on

[s∗3, t1 + 1] and x (t1 + 1) > −1. So t7 and t8 can be uniquely de�ned by

s∗3 < t7 ≤ t8 < t1 + 1, x (t7) = −1− ε, x (t8) = −1.
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In addition, from (a, ε) ∈ U3 it follows that x has a zero in (t2 + 1, t3 + 1). Since x is

of type (K) on [t2 + 1, t3 + 1], there is a unique zero. Let τ denote the zero of xΣ(a,ε)

in (t2 + 1, t3 + 1) (Fig. 6).

Proposition 3.5. Suppose (a, ε) ∈ U3 and de�ne t1, t2, ..., t8 and τ for x = xΣ(a,ε) as

above. Then xτ+1 ∈ Σ (U1) and

xτ+1 = Σ (t3 + 1− τ, t5 − t4, t7 − t6, ε) .

Proof. Notice that τ is the �rst positive zero of x. Indeed, we know that the function x

strictly increases on [s∗3, t1 + 1] from x (s∗3) < −1− ε to x (t1 + 1) ∈ (−1, 0) and strictly

increases on [t2 + 1, t3 + 1] from x (t2 + 1) < 0 to x (t3 + 1) > 0. It remains to consider

x on [t1 + 1, t2 + 1], where it is of type (K, 1), that is

(3.10) x (t) = e−(t−t1−1)x (t1 + 1) +

ˆ t−t1−1

0

e−(t−t1−1−s)fK,ε
(
K + (1−K) e−s

)
ds

for t1 + 1 ≤ t ≤ t2 + 1. The case ε = 0 is evident. If ε > 0 and z ∈ (t1 + 1, t2 + 1) is

any zero of x, then

ẋ (z) = fK,ε (x (z − 1)) = fK,ε
(
K −Ke−z

)
> fK,ε

(
K −Ke−t1−1

)
= fK,ε (1) = 0.

Hence it is easy to see that the existence of a zero of x in (t1 + 1, t2 + 1) implies

x (t2 + 1) > 0, a contradiction. Thus x (t) < 0 follows for all t ∈ [0, τ).

From (3.10) one easily obtains that x (t1 + 1) ≤ x (t) for t ∈ [t1 + 1, t2 + 1].

Now it should be clear that

x (τ) = 0,

x is of type (K) on [τ, t3 + 1],

x is of type (0, 1 + ε) on [t3 + 1, t4 + 1],

x is of type (0) on [t4 + 1, t5 + 1],

x is of type (−K,−1) on [t5 + 1, t6 + 1],

x is of type (−K) on [t6 + 1, t7 + 1],

x is of type (0,−1− ε) on [t7 + 1, t8 + 1],

x is of type (0) on [t8 + 1, τ + 1].

It remains to show that

t4 − t3 = T (ε) , t6 − t5 = T̂ (ε) , t8 − t7 = T (ε) ,

which relations are consequences of the de�nitions of t3, t4, t5, t6, t7, t8, T (ε) , T̂ (ε) and

the facts that x is of type (0) on [t3, t4] and on [t7, t8] and that x is of type (−K) on

[t5, t6]. The proof is complete. �
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We remark that if xΣ(a,ε)
τ+1 = Σ (a, ε) holds for some (a, ε) ∈ U3, i. e.,

a1 = t3 + 1− τ, a2 = t5 − t4, a3 = t7 − t6,

then x is a periodic solution of Eq. (3.1) with minimal period τ + 1. The dependence

of t3 + 1− τ, t5 − t4 and t7 − t6 on (a, ε) is considered in the next result.

Proposition 3.6. Suppose (a, ε) ∈ U3 and de�ne t3, t4, t5, t6, t7 and τ as in Proposition

3.5. Then

t3 + 1− τ = 1 + ln
I1,∗

1 + ε
− ln

(
K

K − 1− ε
− I3,∗

K
− c2 (ε)

K − 1

)
,

t5 − t4 = ln
I2,∗ +Kes

∗
2

(K − 1) I1,∗
,

t7 − t6 = ln
−I3,∗ (K − 1− ε)

(1 + ε) (I2,∗ +Kes
∗
2)
.

In particular, if ε = 0, that is (a, 0) ∈ U3, then

t3 + 1− τ = a1 + ln
K (K − 1) (1− e−a1)

K + (K − 1) e−1 (1 + ea1+a2+a3 − ea1 − ea1+a2)
,

t5 − t4 = a2 + ln
e−a2 (1− e−a1) + 1

(K − 1) (1− e−a1)
,

t7 − t6 = a3 + ln

[
(K − 1)

(
ea1+a2

ea1 + ea1+a2 − 1
− e−a3

)]
.

Proof. Applying that x is of type (K) on [t2 + 1, τ ], an integration gives

0 = eτx (τ) = et2+1x (t2 + 1) +K
(
eτ − et2+1

)
.

Hence, using also Proposition 3.3,

(3.11) τ = ln

(
K

K − 1− ε
− I3,∗

K
− c2 (ε)

K − 1

)
.

This formula combined with (3.9) yields the result for t3 + 1− τ .
It follows from (3.9) and the de�nition of T (ε) that t4 = ln I1,∗. Since s∗2 < t5 < t6 <

s3,

−1 = e−t5
(
I2,∗ +

ˆ t5

s2∗
es (−K) ds

)
= e−t5

(
I2,∗ +Kes

∗
2
)
−K,

−1− ε = e−t6
(
I2,∗ +

ˆ t6

s2∗
es (−K) ds

)
= e−t6

(
I2,∗ +Kes

∗
2
)
−K.
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So

t5 = ln

(
I2,∗

K − 1
+

K

K − 1
es

∗
2

)
,

t6 = ln

(
I2,∗

K − 1− ε
+

K

K − 1− ε
es

∗
2

)
.

Using that x is of type (0) on [s∗3, t1 + 1] and s∗3 < t7 < t1 + 1,

−1− ε = e−(t7−s∗3)x (s∗3) = e−t7I3,∗

and

t7 = ln
−I3,∗

1 + ε
follow. Therefore

t5 − t4 = ln
I2,∗ +Kes

∗
2

(K − 1) I1,∗
,

t7 − t6 = ln
−I3,∗ (K − 1− ε)

(1 + ε) (I2,∗ +Kes
∗
2)
.

The case ε = 0 is an elementary exercise. �

The above results allow us to de�ne the map F : U3 → R3 by

F (a, ε) = (t3 + 1− τ, t5 − t4, t7 − t6) ,

where t3, t4, t5, t6, t7 and τ are uniquely determined by the solution xΣ(a,ε) of Eq. (3.1).

An immediate consequence of the explicit representation of F (a, ε) in terms of (a, ε)

and the C1-smoothness of the involved functions:

Proposition 3.7. F is C1-smooth.

If (a, ε) ∈ U3 and F (a, ε) = a, then xΣ(a,ε) is a periodic solution of Eq. (3.1) with

minimal period τ + 1. A �rst step to �nd a solution of F (a, ε) = a in U3 is to consider

the case ε = 0. Set

U3
0 =

{
a ∈ R3 : (a, 0) ∈ U3

}
.

Let K∗ be the unique solution of w (K) = 1/e on (3,∞), where

w (K) =
(K2 − 2K − 1)

2

(K − 1) (K + 1)3 .

Then K∗ is well-de�ned. Indeed, w (3) = 1/32, limK→∞w (K) = 1, and as K 7→
2K/ (K2 − 1) and K 7→ (4K + 2) / (K + 1)2 are strictly decreasing functions on (3,∞),

w (K) =

(
1− 2K

K2 − 1

)(
1− 4K + 2

(K + 1)2

)

29



is strictly increasing on (3,∞). Evaluating w (6) and w (7), one sees that K∗ ∈ (6, 7).

We have the numerical approximation K∗ ≈ 6.8653. Note that w (K) > 1/e for K >

K∗.

Proposition 3.8. For K ∈ (3, K∗], equation F (a, 0) = a admits no solution in U3
0 .

For K > K∗, there is a unique a∗ ∈ U3
0 with F (a∗, 0) = a∗.

Proof. Assume K > 3. First observe that a ∈ R3 is a solution of F (a, 0) = a if and

only if

a2 = − ln

(
K − 1− 1

1− e−a1

)
,(3.12)

a3 = ln ((K − 1) (ea1 − 1)) ,(3.13)

and g (a1, K) = 1/e, where

g (u,K) = Ke−2u [(K − 1) (1− e−u)− 1]
2

(K − 1)2 (1− e−u)3 .

Indeed, (3.12) comes from the equation given for t5 − t4 in Proposition 3.6, (3.13) is

obtained by substituting (3.12) in the t7 − t6-equation, and g (a1, K) = 1/e follows by

substituting (3.12) and (3.13) in the t3 + 1− τ -equation.
Recall that by de�nition, a ∈ R3 belongs to U3

0 if and only if

a1 > 0, a2 > 0, a3 > 0, a1 + a2 + a3 < 1,

xΣ(a,0) (s1) > 1,
∣∣xΣ(a,0) (s2)

∣∣ < 1, xΣ(a,0) (s3) < −1,

−1 < xΣ(a,0) (t1 + 1) = xΣ(a,0) (t2 + 1) < 0 and xΣ(a,0) (t3 + 1) > 0.

If a ∈ R3 with F (a, 0) = a, then not only a2 and a3 can be expressed as functions

of K and a1, but also a1 + a2 + a3, xΣ(a,0) (si) and xΣ(a,0) (ti + 1) for all i ∈ {1, 2, 3}.
Computing ea2+a3 from (3.12) and (3.13), and substituting for e2a1 from the equation

g (a1, K) = e−1, one obtains that

(3.14) a1 + a2 + a3 = 1 + ln

(
K − K

(K − 1) (1− e−a1)

)
.

By (3.4) and the de�nition of I1, we get xΣ(a,0) (s1) = e−s1I1 = K (1− e−a1). Relations

(3.4), (3.12), (3.13) and the de�nitions of I2 and I3 yield

xΣ(a,0) (s2) = e−s2I2 = K
[
(K − 1)

(
1− e−a1

)
− 1
]
,

xΣ(a,0) (s3) = e−s3I3 = −K
(
1− e−a1

)
= −xΣ(a,0) (s1) .(3.15)
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Also, (3.12), (3.13), g (a1, K) = e−1, Proposition 3.3 and the de�nitions of I1,∗ and I3,∗

give

xΣ(a,0) (t1 + 1) = xΣ(a,0) (t2 + 1) =
K − 1

K
I3,∗ = K

[
1− (K − 1)

(
1− e−a1

)]
= −xΣ(a,0) (s2) ,

xΣ(a,0) (t3 + 1) = K +
K

e (K − 1) I1,∗

(
xΣ(a,0) (t1 + 1)−K

)
= K

(
1− e−a1

)
= xΣ(a,0) (s1) .

As one can check by elementary calculations, these relations imply that a ∈ R3

satisfying F (a, 0) = a belongs to U3
0 if and only if

a1 ∈ JK =

(
ln
K − 1

K − 2
, ln

K2 −K
K2 − 2K − 1

)
.

Hence we get a unique solution a∗ = (a∗1, a
∗
2, a
∗
3) of F (a, 0) = a in U3

0 if there exist a

unique a∗1 ∈ JK with g (a∗1, K) = e−1, furthermore a∗2 and a∗3 are de�ned by (3.12) and

(3.13), respectively.

We claim that g (·, K) is strictly increasing on JK for K > 3. Note that

∂g (u,K)

∂u
= g (u,K)

2 + e−u + (K − 1) (1− e−u) e−u − 2(K − 1) (1− e−u)
[(K − 1) (1− e−u)− 1] (1− e−u)

.

If u ∈ JK , then (K − 1) (1− e−u) − 1 ∈ (0, 1/K). Hence it su�ces to show that for

K > 3 and u ∈ JK ,

2 + e−u + (K − 1)
(
1− e−u

)
e−u − 2(K − 1)

(
1− e−u

)
> 0,

which inequality is equivalent to the second order inequality

(2K − 4) z2 − (3K − 2) z + (K − 1) < 0

with z = eu. The solution formula gives that we have to show that for K > 3,

JK ⊂ (ln z1, ln z2), where

z1 =
3K − 2−

√
K2 + 12 (K − 1)

4K − 8
and z2 =

3K − 2 +
√
K2 + 12 (K − 1)

4K − 8
.

As
√
K2 + 12 (K − 1) > K + 2 for all K > 2, we see that

ln z1 < ln
3K − 2− (K + 2)

4K − 8
= ln

1

2
< inf JK .
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The same estimate yields that z2 > K/ (K − 2), and it is easy to see that

K

K − 2
>

K2 −K
K2 − 2K − 1

for K > 3. Hence ln z2 > sup JK and g′u (u,K) > 0 for K > 3 and u ∈ JK .
In addition, g (u,K)→ 0 as u→ inf JK + 0. Also,

lim
u→sup JK−0

g (u,K) = w (K)


< 1

e
, 3 < K < K∗,

= 1
e
, K = K∗,

> 1
e

K > K∗.

Therefore the continuity and monotonicity of g implies that for K > 3, there exists

a∗1 ∈ JK with g (a∗1, K) = e−1 if and only if K > K∗, and the solution is unique if it

exists. �

One may verify using a construction similar to the one given above that for K = K∗,

F (·, 0) has a �xed point on the boundary of U3
0 .

Proposition 3.9. For K > K∗, xΣ(a∗,0) : R→ R is an LSOP solution.

Proof. Consider solution x = xΣ(a∗,0) : R → R. It follows from the construction in-

troduced above that the minimal period of x is τ + 1 with τ > 0, and x is monotone

nonincreasing on [s1, s3]. Therefore is su�ces to prove that τ < 1,

(3.16) 2 (s3 − s1) = τ + 1

and

(3.17) x

(
t+

τ + 1

2

)
= −x (t)

for t ∈ [s1, s3].

By (3.11), (3.15) and I∗3 = I3 = x (s3) es3 ,

τ = ln

(
K

K − 1
− x (s3) es3

K

)
= ln

(
K

K − 1
+
(
1− e−a∗1

)
es3
)

Substituting result (3.14) into the right hand side, we get

(3.18) τ = ln
(
K
(
1− e−a∗1

))
.

So τ < 1 if and only if a∗1 < lnK− ln (K − e). As a∗1 ∈ JK (see the proof of Proposition

3.8), this bound holds.

32



Relations (3.12) and (3.13) imply

e2(s3−s1) = e2(a∗2+a∗3) = e2a∗1
(K − 1)2 (1− e−a∗1)4

[(K − 1) (1− e−a∗1)− 1]
2

Using relation g (a1, K) = e−1 from the proof of Proposition 3.8,

2 (s3 − s1) = ln
(
Ke
(
1− e−a∗1

))
.

This result together with (3.18) gives (3.16).

As x (s1) = −x (s3) by (3.15) and x is of type (0) on [s1, s2] and on [s3, t1 + 1], the

special symmetry follows for t ∈ [s1, s2] if s2 − s1 = t1 + 1− s3 holds. This equation is

the direct consequence of (3.6), (3.12) and (3.14). In particular, x (s2) = −x (t1 + 1).

As x is of type (−K) on [s2, s3] and of type (K) on [t1 + 1, t3 + 1], special symmetry

holds for t ∈ [s2, s3] if a3 = s3 − s2 = t3 − t1. This result comes from (3.6), (3.9), the

de�nition of I1,∗ and (3.13). So (3.17) follows.

The proof is complete. �

Remark 3.10. A numerical study executed with the aid of the CAPD program [1] gives

that for K = 7,

a∗ ∈ [0.2108, 0.2109]× [0.3003, 0.3004]× [0.3426, 0.3427].

It is shown that the eigenvalues λ1, λ2, λ3 of DaF (a∗, 0) ∈ L (R3,R3) are real with

λ1 ∈ [0.7933, 0.7934], λ2 ∈ [3.9187, 3.9188] and λ3 ∈ [6.8362, 6.8363] .

Now we are capable of verifying the existence of an LSOP solution for Eq. (3.1) for

small ε > 0. In the sequel we �x K = 7, but the results below can be easily modi�ed

for any K > K∗. Since we look for an example with large amplitude periodic orbits, a

particular K is su�cient.

Proposition 3.11. Set K = 7. There exists ε0 > 0 such that for all ε ∈ [0, ε0),

F (a, ε) = a has a solution a∗ (ε) in U3
ε = {a ∈ R3 : (a, ε) ∈ U3}, and xΣ(a∗(ε),ε) : R→ R

is an LSOP solution of Eq. (3.1) with nonlinearity f 7,ε. The range xΣ(a∗(ε),ε) (R) is a

subset of (−7, 7) for all ε ∈ [0, ε0).

Proof. As U3 is open in R3 × [0, 1),

U =
{

(a, ε) : (a, |ε|) ∈ U3
}
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is open in R4. We extend the de�nition of F for ε < 0 because we intend to use the

implicit function theorem. Let G : U → R3 be given by

G (a, ε) =

F (a, ε) if ε ≥ 0,

2F (a, 0)− F (a,−ε) if ε < 0.

Then G is C1-smooth and G (a∗, 0) − a∗ = 0. As 1 is not an eigenvalue of DaG (a∗, 0)

by Remark 3.10, the implicit function theorem yields the existence of ε0 > 0, a convex

bounded open neighborhood N of a∗ in R3 and a C1 function a∗ : (−ε0, ε0)→ R3 so that

N × (−ε0, ε0) ⊂ U , a∗ ((−ε0, ε0)) ⊂ N , a∗(0) = a∗ and for every (a, ε) ∈ N × (−ε0, ε0),

G (a, ε)− a = 0 if and only if a = a∗ (ε). That is F (a∗ (ε) , ε) = a∗ (ε) for all ε ∈ [0, ε0).

Then xΣ(a∗(ε),ε) : [−1,∞)→ R is a periodic solution of Eq. (3.1) with feedback func-

tion f 7,ε for all ε ∈ [0, ε0), and it can be extended to R.
According to Proposition 3.9, xΣ(a∗,0) is an LSOP solution. It is also clear from

Remark 3.4 and the special symmetry property of xΣ(a∗,0) that

max
t∈R

xΣ(a∗,0) (t) = Σ (a∗, 0) (s1) = 7
(
1− e−a∗1

)
< 7

and therefore mint∈R x
Σ(a∗,0) (t) > −7.

For ε ∈ (0, ε0), Lemma 2.3 (i) and the periodicity of xΣ(a∗(ε),ε) gives that V
(
x

Σ(a∗(ε),ε)
t

)
is the same constant for all t ∈ R. It follows from the construction that V (Σ (a∗ (ε) , ε)) =

2. Thus V
(
x

Σ(a∗(ε),ε)
t

)
= 2 for all t ∈ R. It remains to con�rm that

(ξ−1, ξ1) ⊂ xΣ(a∗(ε),ε) (R) ⊂ (−7, 7)

for all ε ∈ (0, ε0). Proposition 2.6 ensures that

xΣ(a∗(ε),ε) (R) ⊂ (−7, 7) = (ξ−2, ξ2)

holds for all ε ∈ (0, ε0), that is the segments of xΣ(a∗(ε),ε) belong to C−2,2 for all ε ∈
(0, ε0). Then xΣ(a∗(ε),ε) (R) ⊃ (ξ−1, ξ1) by Proposition 2.5. Hence xΣ(a∗(ε),ε) is an LSOP

solution with range in (−7, 7) for all ε ∈ (0, ε0). �

Remark 3.12. DaF (a∗ (ε) , ε) has at most 3 distinct (possibly complex) eigenvalues, and

as F is smooth (see Proposition 3.7), they are close to the eigenvalues of DaF (a∗, 0)

in C for ε > 0 small. Because of Remark 3.10, we may choose ε0 > 0 su�ciently small

such that for ε ∈ [0, ε0), the eigenvalues λ1, λ2, λ3 of DaF (a∗ (ε) , ε) are real, simple and

satisfy

0 < λ1 < 0.9, 3 < λ2 < 5 < λ3.
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Consider the case ε = 0. As equation ẋ(t) = −x(t) admits no nontrivial periodic

solution, any periodic solution x of Eq. (3.1) with initial function in Σ (U1
0 ) necessarily

satis�es x (s1) > 1 or x (s3) < −1. However, condition x (s2) < 1 is not self-evident.

This recognition leads to an alternative construction yielding a second periodic solution

of Eq. (3.1) for K > K∗ and ε = 0 and a second LSOP solution of Eq. (3.1) for K = 7

and ε > 0 small. Next we introduce this construction but omit the detailed calculations

as they are analogous to the previous ones.

3.2. Another LSOP solution for nonlinearity fK,ε. For K > 3, de�ne

Ũ1 =
{

(a, ε) ∈ (0, 1)3 × [0, 1) : a1 + a2 + a3 + 2T̃ (ε) + T̂ (ε) < 1
}

and

Ũ1
ε =

{
a ∈ R3 : (a, ε) ∈ Ũ1

}
, ε ∈ [0, 1) .

Note that Ũ1
0 = U1

0 . For given (a, ε) ∈ Ũ1, set

s0 = −1,

s1 = s0 + a1 = −1 + a1,

s∗1 = s1 + T̃ (ε) = −1 + a1 + T̃ (ε) ,

s2 = s∗1 + a2 = −1 + a1 + T̃ (ε) + a2,

s∗2 = s2 + T̂ (ε) = −1 + a1 + T̃ (ε) + a2 + T̂ (ε) ,

s3 = s∗2 + a3 = −1 + a1 + T̃ (ε) + a2 + T̂ (ε) + a3,

s∗3 = s3 + T̃ (ε) = −1 + a1 + T̃ (ε) + a2 + T̂ (ε) + a3 + T̃ (ε) .

Similarly, de�ne h̃ = h̃ (a, ε) : R→ R by

h̃ (t) =



K if t < s1,

fK,ε
(
−K + (K + 1 + ε) e−(t−s1)

)
if s1 ≤ t < s∗1,

0 if s∗1 ≤ t < s2,

fK,ε
(
−K + (K − 1) e−(t−s2)

)
if s2 ≤ t < s∗2,

−K if s∗2 ≤ t < s3,

fK,ε
(
K − (K + 1 + ε) e−(t−s3)

)
if s3 ≤ t < s∗3,

0 if s∗3 ≤ t.

and the continuous map Σ̃ : Ũ1 → C by

Σ̃ (a, ε) (t) = e−t
ˆ t

−1

esh̃ (a, ε) (s) ds (−1 ≤ t ≤ 0) .
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Note that for a ∈ Ũ1
0 = U1

0 , Σ̃ (a, 0) = Σ (a, 0).

Proposition 3.13. For each �xed ε ∈ (0, 1), the map Ũ1
ε 3 a 7→ Σ̃ (a, ε) ∈ C is

C1-smooth with

DaΣ̃ (a, ε) (b) = b1ψ̃1 + b2ψ̃2 + b3ψ̃3

for all a ∈ Ũ1
ε and b = (b1, b2, b3) ∈ R3, where

ψ̃i : [−1, 0] 3 t 7→ e−t
ˆ t

−1

es
∂

∂ai
h̃ (a, ε) (s) ds ∈ R, i ∈ {1, 2, 3} ,

are linearly independent elements of C.

Now let

Ũ2 =
{

(a, ε) ∈ Ũ1 : Σ̃ (a, ε) (s) > 1 + ε for s ∈ [s1, s
∗
1] ∪ [s2, s

∗
2] ,

Σ̃ (a, ε) (s) < −1− ε for s ∈ [s3, s
∗
3]
}
.

If (a, ε) ∈ Ũ2 and x = xΣ̃(a,ε) : [−1,∞) → R is the solution of Eq. (3.1) with initial

function Σ̃ (a, ε), then there exist t1, t2, ..., t6 in [−1, 0] such that

−1 < t1 ≤ t2 < s1 ≤ s∗1 < s2 ≤ s∗2 < t3 ≤ t4 < t5 ≤ t6 < s3 ≤ s∗3

and

x (t1) = 1, x (t2) = 1 + ε, x (t3) = 1 + ε, x (t4) = 1, x (t5) = −1, x (t6) = −1− ε

(see Fig. 7). A second subset of Ũ1 is

Ũ3 =
{

(a, ε) ∈ Ũ2 : xΣ̃(a,ε) (t2 + 1) < −1− ε, xΣ̃(a,ε) (t3 + 1) > 0
}
.

One may show that Ũ3 is open in (0, 1)3 × [0, 1). Fig. 7 shows a typical element of

Σ̃
(
Ũ3
)
.

The following remark resembles Remark 3.4 and we are going to refer to it throughout

the paper.

Remark 3.14. Observe that any ϕ ∈ Σ̃
(
Ũ3
)
can be characterized as follows: there exist

ε ∈ [0, 1) and

−1 < s1 ≤ s∗1 < s2 ≤ s∗2 < s3 ≤ s∗3 < 0

with

s∗1 − s1 = T̃ (ε) , s∗2 − s2 = T̂ (ε) , s∗3 − s3 = T̃ (ε)

so that ϕ ∈ C and
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(i) ϕ(−1) = 0,

(ii) ϕ is of type (K) on [−1, s1],

(iii) ϕ is of type (−K, 1 + ε) on [s1, s
∗
1],

(iv) ϕ is of type (0) on [s∗1, s2],

(v) ϕ is of type (−K,−1) on [s2, s
∗
2],

(vi) ϕ is of type (−K) on [s∗2, s3],

(vii) ϕ is of type (K,−1− ε) on [s3, s
∗
3],

(viii) ϕ is of type (0) on [s∗3, 0],

(ix) ϕ (s) > 1 + ε for s ∈ [s1, s
∗
1] ∪ [s2, s

∗
2],

(x) ϕ (s) < −1− ε for s ∈ [s3, s
∗
3],

(xi) if −1 ≤ t2 < s1 with ϕ (t2) = 1 + ε, then xϕ (t2 + 1) < 0,

(xii) if s∗1 < t3 < s2 with ϕ (t3) = 1 + ε, then xϕ (t3 + 1) > 0.

Note that (i)-(viii) characterize ϕ ∈ Σ̃
(
Ũ1
)
and (i)-(x) characterize ϕ ∈ Σ̃

(
Ũ2
)
.
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t2 t3

t4

t5

t7

t8

+1
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t
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+1
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-1 s
1
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3
s
3
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τ

τ

1+ ε
1

-1
-1-ε

Figure 7. Solution x
Σ̃(a,ε)

of Eq. (3.1)

For (a, ε) ∈ Ũ3, let τ be the (unique) zero of x = xΣ̃(a,ε) on [t2 + 1, t3 + 1]. If

(a, ε) ∈ Ũ3 and t1, t2, ..., t8,τ are de�ned as in this subsection, then xτ+1 ∈ Σ̃
(
Ũ1
)
and

xτ+1 = Σ̃ (t3 + 1− τ, t5 − t4, t7 − t6, ε) .

As in the previous subsection, τ and ti, i ∈ {1, .., 6} , are C1-smooth functions of

(a, ε). Therefore we may introduce the C1-smooth map F̃ : Ũ3 → R3, F̃ (a, ε) =

(t3 + 1− τ, t5 − t4, t7 − t6). In case F̃ (a, ε) = a for (a, ε) ∈ Ũ3, then xΣ̃(a,ε) is a periodic

solution of Eq. (3.1).
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Introduce the notation

Ũ3
ε =

{
a ∈ R3 : (a, ε) ∈ Ũ3

}
, ε ∈ [0, 1),

and recall the de�nition of K∗ from the previous subsection. We obtain the following

results analogously to Proposition 3.8 and Proposition 3.11.

Proposition 3.15. For K > K∗, there exists a unique ã ∈ Ũ3
0 with F̃ (ã, 0) = ã. For

K ∈ (3, K∗], F̃ (a, 0) = a has no solution in Ũ3
0 .

It can be shown that for K = K∗, F̃ (·, 0) has a �xed point on the boundary of Ũ3
0

and it equals the �xed point of F (·, 0).

Proposition 3.16. For K > K∗, xΣ̃(ã,0) : R→ R is an LSOP solution.

Remark 3.17. For K = 7, a numerical study executed with the aid of the CAPD

program [1] gives that

ã ∈ [0.2202, 0.2203]× [0.2876, 0.2877]× [0.3585, 0.3586].

In addition, it is shown that the eigenvalues λ1, λ2, λ3 of DaF̃ (ã, 0) ∈ L (R3,R3) are

real with

λ1 = 0, λ2 ∈ [−0.2415, 0.2347] and λ3 ∈ [2.3226, 2.3227].

Proposition 3.18. For K = 7, there exists ε̃0 > 0 such that for all ε ∈ [0, ε̃0),

F̃ (a, ε) = a has a solution ã (ε) in Ũ3
ε , and x

Σ̃(ã(ε),ε) : R→ R is an LSOP solution. The

range xΣ̃(ã(ε),ε) (R) is a proper subset of (−7, 7).

Remark 3.19. It follows from the smoothness of F̃ and Remark 3.17, that one may set

ε̃0 > 0 so small that for ε ∈ [0, ε̃0), the eigenvalues λ1, λ2 and λ3 of DaF̃ (ã (ε) , ε) satisfy

0 ≤ |λ1| ≤ |λ2| < .5, 2 < λ3.

Note that λ3 is necessarily real. Either both λ1 and λ2 are real, or λ2 = λ1.

Remark 3.20. It is clear from Remarks 3.4 and 3.14 that for K = 7,

max
t∈R

xΣ(a∗,0) (t) = Σ (a∗, 0) (s1) = 7
(
1− e−a∗1

)
and

max
t∈R

xΣ̃(ã,0) (t) = Σ̃ (ã, 0) (s1) = 7
(
1− e−ã1

)
.
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As a∗1 < ã1 by Remarks 3.10 and 3.17, we see that

max
t∈R

xΣ(a∗,0) (t) < max
t∈R

xΣ̃(ã,0) (t) .

Both periodic solutions are of special symmetry, hence

min
t∈R

xΣ(a∗,0) (t) = Σ (a∗, 0) (s3) > Σ̃ (ã, 0) (s3) = min
t∈R

xΣ̃(ã,0) (t) .

As Σ and Σ̃ are continuous functions of (a, ε), furthermore a∗ and ã are continuous

functions of ε, we may suppose that the same inequalities,

max
t∈R

xΣ(a∗(ε),ε) (t) = max
t∈[−1,0]

Σ (a∗ (ε) , ε) (t) < max
t∈[−1,0]

Σ̃ (ã (ε) , ε) (t) = max
t∈R

xΣ̃(ã(ε),ε) (t)

and

min
t∈R

xΣ(a∗(ε),ε) (t) = min
t∈[−1,0]

Σ (a∗ (ε) , ε) (t) > min
t∈[−1,0]

Σ̃ (ã (ε) , ε) (t) = min
t∈R

xΣ̃(ã(ε),ε) (t)

hold for all ε ∈ (0,min (ε0, ε̃0)).

Remark on the choice of K. We can summarize our results regarding case ε = 0 as

follows. For K ∈ (3, K∗), Eq. (3.1) admits no periodic solution with initial function in

Σ (U3
0 , 0)∪ Σ̃

(
Ũ3

0 , 0
)
. For K > K∗, Eq. (3.1) has a unique periodic solution with initial

segment in Σ (U3
0 , 0) and a unique periodic solution with initial segment in Σ̃

(
Ũ3

0 , 0
)
.

It can be shown that for K = K∗, there is a single periodic solution with initial function

in bdΣ (U3
0 , 0) ∩ bdΣ̃

(
Ũ3

0 , 0
)
.

Fig. 8 shows the graphs of the �rst components of the �xed points of F (·, 0) and

F̃ (·, 0) for K ≥ K∗ (as functions of K).

15 20 25 30
K

0.05
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0.30

Figure 8. The plot of a∗1 = a∗1 (K) and ã1 = ã1 (K) for K ≥ K∗
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This suggests that for each �xed small ε > 0 there exists K∗ (ε) so that Eq. (3.1)

undergoes a saddle-node-like bifurcation of periodic orbits at K = K∗ (ε).

To give a more detailed picture of the case ε = 0, we are going to show the following

results in Section 6. For K > K∗ and ε = 0, xΣ(a∗,0) : R → R and xΣ̃(ã,0) : R → R are

the only normalized LSOP solutions of Eq. (3.1) (see Proposition 6.4). For 0 < K < K∗

and ε = 0, Eq. (3.1) has no such nontrivial periodic solutions (see Corollary 6.2 and

Proposition 6.4).

4. The Existence of LSOP Solutions for a Monotone Nonlinearity

Theorem 1.1 states that one may give a strictly increasing feedback function f so

that (1.1) has exactly two LSOP solutions. In this section we discuss the existence of

these LSOP solutions.

LetK = 7 and ε ∈ (0,min (ε0, ε̃0)) be �xed, where ε0 and ε̃0 are given by Propositions

3.11 and 3.18, respectively. Proposition 3.11 implies that Eq. (3.1) has an LSOP solution

with initial function Σ (a∗ (ε) , ε) and with range in (ξ−2, ξ2).

Observe that xΣ(a∗(ε),ε) is a normalized LSOP solution of (3.1) with

Σ (a∗ (ε) , ε) ∈ H = {ϕ ∈ C : ϕ (−1) = 0} , d
dt

Σ (a∗ (ε) , ε) /∈ H.

Then a Poincaré return map can be de�ned on {Σ (a∗ (ε) , ε)}+N , where N is a convex

bounded open neighborhood of 0 in H, see Section 2. As P is C1-smooth and has

�xed point Σ (a∗ (ε) , ε), there exists a convex open neighborhood N̂ ⊂ N of 0 in H so

that P 2 = P ◦ P is de�ned on {Σ (a∗ (ε) , ε)} + N̂ . We have the following observation

regarding the range of P 2.

Proposition 4.1. There exists an open neighborhood V ⊆ N̂ of 0 in H so that

if ϕ ∈ {Σ (a∗ (ε) , ε)}+ V, then P 2 (ϕ) ∈ Σ
(
U3
ε × {ε}

)
.

Proof. If ϕ ∈ {Σ (a∗ (ε) , ε)}+ V , with an appropriate open ball V centered at 0 in H,

then xϕ1 and xΣ(a∗(ε),ε)
1 are close in C1-norm, and there exist

−1 < t1 < t2 < t3 < t4 < t5 < t6 < t7 < t8 < 0 < τϕ

such that

ϕ
(
t1
)

= 1, ϕ
(
t2
)

= 1 + ε, ϕ
(
t3
)

= 1 + ε, ϕ
(
t4
)

= 1,

ϕ
(
t5
)

= −1, ϕ
(
t6
)

= −1− ε, ϕ
(
t7
)

= −1− ε, ϕ
(
t8
)

= −1, xϕ (τϕ) = 0,
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ϕ (t) ∈ (−1, 1) for t ∈
[
−1, t1

)
,

ϕ (t) > 1 + ε for t ∈
(
t2, t3

)
,

ϕ (t) ∈ (−1, 1) for t ∈
(
t4, t5

)
,

ϕ (t) < −1− ε for t ∈
(
t6, t7

)
,

xϕ (t) ∈ (−1, 1) for t ∈
(
t8, τϕ

]
,

and the smallest positive zero τϕ of xϕ is simple and belongs to
(
t2 + 1, t3 + 1

)
. In

consequence, P (ϕ) = xϕτϕ+1, and we have

P (ϕ) (−1) = 0,

P (ϕ) is of type (7) on
[
−1, t3 − τϕ

]
,

P (ϕ) is of type (0) on
[
t4 − τϕ, t5 − τϕ

]
,

P (ϕ) is of type (−7) on
[
t6 − τϕ, t7 − τϕ

]
,

P (ϕ) is of type (0) on
[
t8 − τϕ, 0

]
.

If the radius of V is small enough, then also

P (ϕ) (t) > 1 + ε for t ∈
[
t3 − τϕ, t4 − τϕ

]
,

|P (ϕ) (t)| < 1 for t ∈
[
t5 − τϕ, t6 − τϕ

]
and P (ϕ) (t) < −1− ε for t ∈

[
t7 − τϕ, t8 − τϕ

]
.

In this case it also follows that whenever P (ϕ) maps the disjoint subintervals J1,

J2, J3, J4 of [−1, 0] onto the intervals [1, 1 + ε], [1, 1 + ε], [−1− ε,−1], [−1− ε,−1],

respectively, then P (ϕ) is of type (7), (0) , (−7), (0) on J1, J2, J3, J4, respectively, and

therefore xP (ϕ) is of type (7, 1), (0, 1 + ε), (−7,−1), (0,−1− ε) on J1 +1, J2 +1, J3 +1,

J4 + 1, respectively. Using an argument similar to the one given above, now it is easy

to see that if we take neighborhood V small enough, then P 2 (ϕ) satis�es conditions

(i)-(viii) of Remark 3.4 with some

−1 < s1 < s∗1 < s2 < s∗2 < s3 < s∗3 < 0,

where

s∗1 − s1 = T (ε) , s∗2 − s2 = T̂ (ε) , s∗3 − s3 = T (ε) .

Using the smooth dependence of solutions on initial data and decreasing the radius of

V further, we can achieve that P 2 (ϕ) satis�es conditions (ix)-(xiv) of Remark 3.4 and

thus P 2 (ϕ) ∈ Σ (U3
ε × {ε}). �

Note that for any small neighborhood V of 0 in H, there is ϕ ∈ {Σ (a∗ (ε) , ε)}+V so

that P (ϕ) does not satisfy conditions (iii), (v) and (vii) of Remark 3.4. So we cannot

state that P (ϕ) ∈ Σ (U3
ε × {ε}).

Proposition 3.18 yields that Eq. (3.1) has another LSOP solution with initial segment

Σ̃ (ã (ε) , ε) and with range in (ξ−2, ξ2). Then one may de�ne a Poincaré return map
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P in a neighborhood of Σ̃ (ã (ε) , ε) in H in an analogous fashion. The analogue of

Proposition 4.1 holds.

Proposition 4.2. There is an open neighborhood Ṽ of 0 in H such that

if ϕ ∈
{

Σ̃ (ã (ε) , ε)
}

+ Ṽ , then P 2 (ϕ) ∈ Σ̃
(
Ũ3
ε × {ε}

)
.

We omit the proof.

The hyperbolicity of the LSOP solutions is con�rmed with the aid of the next propo-

sition.

Proposition 4.3. Suppose that X is a real Banach space, V0,V1 and U0,U1 are open

subsets of X and Rm, respectively, V1 ⊂ V0, U1 ⊂ U0 , x0 ∈ V1, u0 ∈ U1, the maps

Q : U0 → Rm, R : U0 → X, S : V0 → X

are C1−smooth, Q (u0) = u0, R (u0) = x0, S (x0) = x0, Q (U1) ⊂ U0, R (U1) ⊂ V0,

S (V1) ⊂ R (U1), moreover, DR (u0) ∈ L (Rm, X) is injective and S (R (u)) = R (Q (u))

for all u ∈ U1. Then

σ (DS (x0)) = {0} ∪ σ (DQ (u0)) ,

and for each λ ∈ σ (DS (x0))\{0}, the corresponding generalized eigenspaces of DS (x0)

and DQ (u0) have the same dimension.

Proof. By introducing the maps

u 7→ Q (u+ u0)−Q (u0) , u 7→ R (u+ u0)−R (u0) , x 7→ S (x+ x0)− S (x0) ,

we may assume that x0 = 0 and u0 = 0.

By the injectivity of DR (0), the set Y = {DR (0)u : u ∈ Rm} is an m-dimensional

subspace of X and

A : Rm 3 u 7→ DR (0)u ∈ Y

is a linear isomorphism. Let A−1 denote the inverse of A. Since Y is �nite dimensional,

there is a closed complementary subspace Z of Y in X, i. e., X = Y ⊕ Z. The set

Y0 = A (U0) is an open neighborhood of 0 ∈ Y . De�ne the map

T : Y0 + Z 3 y + z 7→ R
(
A−1 (y)

)
+ z ∈ X.

Clearly T is C1−smooth, T (0) = 0, DT (0) = idX and T (Y0) = R (U0). The inverse

mapping theorem shows that T is a local C1-isomorphism at 0 ∈ X.

If x is in a small neighborhood of 0 ∈ X and x ∈ R (U1), then there exist y ∈ Y0

and u ∈ U1 so that x = R (u), y = T−1 (x), u = A−1y. Then by applying S (R (u)) =
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R (Q (u)), we �nd that

(4.1) S (x) = S (R (u)) = R (Q (u)) = R
(
A−1 (A (Q (u)))

)
= T (A (Q (u)))

= T
(
A
(
Q
(
A−1y

)))
= T ◦ A ◦Q ◦ A−1 ◦ T−1 (x) .

In a su�ciently small open neighborhood of 0 ∈ X de�ne the C1-smooth map s into

X by

s (x) = T−1 (S (T (x))) .

If x is in the domain of s and T (x) ∈ V1, then by the assumption S (V1) ⊂ R (U1) there

exists u ∈ U1 so that

S (T (x)) = R (u) = R
(
A−1 (A (u))

)
= T (A (u)) .

Hence for such an x we obtain that s (x) = Au ∈ Y . Therefore s maps a small

neighborhood of 0 ∈ X into Y . Consequently, Ds (0) (y + z) = By + Cz for all y ∈ Y
and z ∈ Z, where B ∈ L (Y, Y ) is the derivative of s restricted to a neighborhood of

0 ∈ Y and C ∈ L (Z, Y ) is the derivative of s restricted to a neighborhood of 0 ∈ Z.
If y ∈ Y is in a su�ciently small neighborhood of 0 ∈ Y , then there is u ∈ U1 with

y = Au,

T (y) = T (A (u)) = R
(
A−1 (A (u))

)
= R (u) ∈ R (U1) ,

and consequently, by applying (4.1),

s (y) = T−1 ◦ S ◦ T (y) = T−1 ◦ T ◦ A ◦Q ◦ A−1 ◦ T−1 ◦ T (y) = A ◦Q ◦ A−1 (y) .

Therefore B = A ◦DQ (0) ◦A−1. From DT (0) = DT−1 (0) = idX one gets DS (0) =

Ds (0). Thus

DS (0) (y + z) =
(
A ◦DQ (0) ◦ A−1

)
y + Cz

for all y ∈ Y , z ∈ Z, with range (C) ⊂ Y , and the statements of the proposition follow

in a straightforward way. �

Proposition 4.4. The orbits de�ned by LSOP solutions xΣ(a∗(ε),ε) and xΣ̃(ã(ε),ε) are

hyperbolic with 2 and 1 Floquet multipliers outside the unit circle, respectively.

Proof. First we prove that DP 2 (Σ (a∗ (ε) , ε)) has real Floquet multipliers µ1, µ2, µ3 of

multiplicity 1 with

0 < µ1 < 0.81, 9 < µ2 < 25 < µ3.

Set X = H, m = 3, x0 = Σ (a∗ (ε) , ε) and u0 to be the �xed point a∗ (ε) of F (·, ε)
in U3

ε given by Proposition 3.11. Choose V0 = {x0}+ V , where the open set V is given
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by Proposition 4.1. Set U0 to be the open set on which F 2(·, ε) is de�ned, that is

U0 =
{
a ∈ U3

ε : F (a, ε) ∈ U3
ε

}
.

Let

U1 =
{
a ∈ U0 : F 2 (a, ε) ∈ U0 and Σ (a, ε) ∈ V0

}
.

Clearly U1 ⊂ U0 is open and u0 ∈ U1. Let V1 ⊂ V0 be an open ball with x0 ∈ V1

and P 2 (V1) ⊂ Σ (U1 × {ε}). The latter set exists because x0 ∈ Σ (U1 × {ε}), P 2 is

continuous and maps V0 into Σ (U3
ε × {ε}) by Proposition 4.1.

De�ne

Q = F 2 : U0 → R3, R = Σ (·, ε) : U0 → H, S = P 2 : V0 → H.

Proposition 3.7 yields that Q is C1-smooth, Proposition 3.2 gives that R is C1-smooth

and DR (u0) is injective. The map S is also smooth [19]. Clearly Q (u0) = u0, R (u0) =

x0 and S (x0) = x0, moreover U1 and V1 are chosen so that Q (U1) ⊂ U0, R (U1) ⊂ V0

and S (V1) ⊂ R (U1) hold. It is easy to see that S (R (u)) = R (Q (u)) for all u ∈ U1.

Remark 3.12 implies that the eigenvalues of DQ (u0) are µi, i ∈ {1, 2, 3}, with 0 <

µ1 < 0.81 and 9 < µ2 < 25 < µ3. It follows from Proposition 4.3 that the eigenvalues

of DP 2 (x0) are 0, µ1, µ2, µ3 with the above bounds, and µi, i ∈ {1, 2, 3}, are simple

eigenvalues.

If µ is an eigenvalue of DP (x0), then µ2 is an eigenvalue of DP 2 (x0) = DP (x0) ◦
DP (x0), and the generalized eigenspace of DP (x0) associated to µ is clearly a subset of

the generalized eigenspace of DP 2 (x0) associated to µ2. Consequently, DP (x0) has two

simple real eigenvalues outside the unit circle, and it has no eigenvalue with absolute

value 1.

The statement for xΣ̃(ã(ε),ε) can be veri�ed in a similar way. �

Choose D = R and the consider the Banach space C1
b (D,R) = C1

b (R,R) . Clearly

f 7,ε ∈ C1
b (R,R) for all ε ∈ [0, 1).

Proposition 4.5. Set µ = 1, K = 7. Then for each ε ∈ (0,min (ε0, ε̃0)), where ε0 and

ε̃0 are given by Propositions 3.11 and 3.18, respectively, there exists δ0 = δ0 (ε) > 0 so

that if f ∈ C1
b (R,R) satis�es (H1), and ‖f − f 7,ε‖C1

b
< δ0, then Eq. (1.1) admits two

normalized LSOP solutions p : R → R and q : R → R with p (R) ( q (R) ⊂ (ξ−2, ξ2).

The corresponding periodic orbits

Op = {pt : t ∈ R} and Oq = {qt : t ∈ R}

are hyperbolic and have 2 and 1 Floquet multipliers outside the unit circle, respectively.
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Proof. Consider nonlinearities f ∈ C1
b (R,R) satisfying hypothesis (H1). Then Propo-

sition 2.1 and Proposition 4.4 imply that there exists δ0 = δ0 (ε) > 0 such that if

‖f − f 7,ε‖C1
b
< δ0, then Eq. (1.1) has two periodic solutions p : R → R and q : R → R

with

p0 → Σ (a∗ (ε) , ε) and q0 → Σ̃ (ã (ε) , ε) in C as
∥∥f − fK,ε∥∥

C1
b

→ 0.

As the initial segments p0 and q0 are arbitrarily close to Σ (a∗ (ε) , ε) and Σ̃ (ã (ε) , ε),

respectively, and the periodic solutions are of monotone type, we get V (p0) = V (q0) = 2

if δ0 is small enough. In this case the periodicity of p and q and the monotonicity of V

gives that V (pt) = V (qt) = 2 for all t ∈ R. In addition, it is easy to see that one may

choose δ0 so small that

(ξ−1, ξ1) ⊂ p (R) ⊂ (ξ−2, ξ2) and (ξ−1, ξ1) ⊂ q (R) ⊂ (ξ−2, ξ2) .

Hence p and q are LSOP solutions of Eq. (1.1) with range in (ξ−2, ξ2). Obviously we

may assume that p and q are normalized. It was pointed out in Remark 3.20 that

xΣ(a∗(ε),ε) (R) ( xΣ̃(ã(ε),ε) (R). Therefore p (R) ( q (R) provided δ0 is small enough.

As we have seen in Section 2, one may de�ne a C1-smooth Poincaré return map P

in a small neighborhood of p0 in H = {ϕ ∈ C : ϕ (−1) = 0} with �xed point p0. As the

Poincaré return map depends smoothly on the right side of the equation and as f is close

to f 7,ε in C1
b -norm, we may suppose using Proposition 4.4 that DP (p0) has exactly two

eigenvalues λ1 > λ2 > 1 with absolute value not smaller than 1. So Op is hyperbolic
with two Floquet multipliers outside the unit circle. Similarly, Proposition 4.4 implies

Oq is hyperbolic with exactly one Floquet multiplier outside the unit circle. �

The statement of the previous proposition holds even if we consider functions in

C1
b (D,R), where D is chosen to be any open set containing{

xΣ(a∗(ε),ε) (t) : t ∈ R
}
∪
{
xΣ̃(ã(ε),ε) (t) : t ∈ R

}
.

In order to verify Theorem 1.1, we have to exclude the existence of more normalized

LSOP solutions. The proof of Theorem 1.1 is completed at the end of Section 6.

5. Properties of Periodic Solutions

This section describes some useful properties of periodic solutions of Eq. (1.1). The

next two results are well-known for the case when f is smooth and strictly increasing,

see [17],[21] and [22]. The �rst proposition is analogous to Theorem 7.1 in [22] and the

proof presented here is a slight modi�cation of the proof of Theorem 7.1 in [22].
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Proposition 5.1. (Monotonicity) Assume that f : R → R is nondecreasing and

bounded, f is either continuously di�erentiable or there exist u1 < u2 < ... < uN

with N ≥ 1 so that f |(−∞,u1], f |[u1,u2], ..., f |[uN ,∞) are continuously di�erentiable. If

p : R→ R is a nontrivial periodic solution of Eq. (1.1), then p is of monotone type.

Proof. Set points t0 < t1 < t0 + ω so that p (t0) = mint∈R p(t) and p (t1) = maxt∈R p(t),

where ω is the minimal period of p. We have to verify that ṗ(t) ≥ 0 for t ∈ (t0, t1) and

ṗ(t) ≤ 0 for t ∈ (t1, t0 + ω).

To prove the lemma indirectly, assume that ṗ(t) < 0 for some t ∈ (t0, t1).

Recall that ξ is a regular value of p, if for each t ∈ R with p (t) = ξ, ṗ (t) 6= 0

holds. According to Sard's Lemma [25], we may choose ξ ∈ (p (t0) , p (t1)) so that ξ is

a regular value of p and p (t∗) = ξ, ṗ (t∗) < 0 for some t∗ ∈ (t0, t1). Fix such ξ and t∗.

Since p is continuously di�erentiable, one may give t2 ∈ (t0, t
∗) and t3 ∈ (t∗, t1) so that

p (t2) = p (t3) = ξ, ṗ (t2) > 0, ṗ (t3) > 0 and for t ∈ (t2, t3) \ {t∗}, p(t) 6= ξ.

De�ne the curves

Γ : [t0, t0 + ω] 3 t 7→ πpt = (p (t) , p (t− 1)) ∈ R2

and

L : [0, 1] 3 s 7→ (ξ, sp (t2 − 1)) + (1− s) p (t3 − 1)) ∈ R2.

We claim that Γ is a simple closed curve. If not, then there exist t4, t5 with t0 ≤
t4 < t5 < t0 + ω so that Γ (t4) = Γ (t5). With x (t) := p (t+ t4) and x̃ (t) := p (t+ t5),

Proposition 2.4 implies πx0 6= πx̃0, a contradiction. Thus curve Γ is simple.

Next we claim that if t ∈ [t0, t1] with p (t) = ξ and ṗ (t) < 0, then Γ (t) /∈ L. Indeed,
for such t we have f (p (t− 1)) = ṗ (t) + ξ < ξ, while f (p (ti − 1)) = ṗ (ti) + ξ > ξ for

i ∈ {2, 3}. As f is monotone nondecreasing, the claim follows.

As a result, J = Γ|(t2,t3) ∪ L is a simple closed curve.

Since ṗ (t2) > 0, ṗ (t3) > 0 and Γ (t2) 6= Γ (t3), there exist ε > 0, C1-maps γj :

[ξ − ε, ξ + ε]→ R, constants δ+
j > 0, δ−j > 0 for j ∈ {2, 3} so that

{(u, γj (u)) : u ∈ [ξ − ε, ξ + ε]} = Γ
([
tj − δ−j , tj + δ+

j

])
, j ∈ {2, 3}

and

R− = {(u, v) : u ∈ (ξ − ε, ξ) , v is in the open interval de�ned by γ2 (u) and γ3 (u)}

R+ = {(u, v) : u ∈ (ξ, ξ + ε) , v is in the open interval de�ned by γ2 (u) and γ3 (u)}

belongs to di�erent connected components of R2 \ J (since Γ (t) /∈ L for all t ∈ (t2, t3)).

We have Γ
(
t2 − δ−2

)
/∈ J , Γ

(
t3 + δ+

3

)
/∈ J and Γ

(
t2 − δ−2

)
∈ R−, Γ

(
t3 + δ+

3

)
∈ R+.
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Combining the above facts, we conclude that Γ
(
t2 − δ−2

)
and Γ

(
t3 + δ+

3

)
belong to

di�erent connected components of R2\J . Clearly, Γ (t0) and Γ (t1) belong to the exterior

of J . Then in case Γ
(
t2 − δ−2

)
∈ int (J) there exists t∗∗ ∈ (t0, t2) such that Γ enters from

ext (J) into int (J) through Γ (t∗∗) ∈ L. In this case R+ ⊂ ext (J), R− ⊂ int (J) and

ṗ (t∗∗) < 0 follows. This is a contradiction to the fact that if t ∈ [t0, t1] with p (t) = ξ

and ṗ (t) < 0, then Γ (t) /∈ L.
If Γ

(
t3 + δ+

3

)
∈ int (J), then there is t∗∗ ∈ (t3, t1) so that Γ enters from int (J) into

ext (J) through Γ (t∗∗) ∈ L. We also have R+ ⊂ int (J), R− ⊂ ext (J) in this case and

again ṗ (t∗∗) < 0 follows, a contradiction.

The assumption that ṗ(t) > 0 for some t ∈ (t1, t0 + ω) leads to a contradiction

analogously. �

The following statement resembles Theorem 7.2 in [22]. As we consider only scalar

equations, the proof is elementary in our case.

Proposition 5.2. (Symmetry) Assume the hypotheses of Proposition 5.1 and in ad-

dition suppose that f (0) = 0, f is odd and 0 belongs to the range of p. Then p is of

special symmetry.

Proof. Let ω denote the minimal period of p. Set points t0 < t1 < t0 + ω as in the

previous proof, that is with p (t0) = mint∈R p(t) < 0 and p (t1) = maxt∈R p(t) > 0.

According to Proposition 5.1, the set of zeros of p in (t0, t1) is an interval:

[z0,, z1] = {t ∈ (t0, t1) : p(t) = 0}

with t0 < z0 ≤ z1 < t1. Similarly, one may set z2 and z3 so that [z2, z3] ⊂ (t1, t0 + ω),

p(t) = 0 for t ∈ [z2,, z3] and p(t) 6= 0 for t ∈ (t1, t0 + ω) \ [z2,, z3]. Of course, z0 = z1 or

z2 = z3 is possible.

Consider the curve Γ : [t0, t0 + ω] 3 t 7→ πpt ∈ R2. As we have veri�ed in the proof

of Proposition 5.1, Γ is a simple closed curve. Setting x = p and x̃ ≡ 0, Proposition 2.4

yields that Γ (t) 6= (0, 0)tr for t ∈ [t0, t0 + ω].

Next we verify that (0, 0)tr ∈ int (Γ). For t ∈ (z1, t1], p(t) > 0, ṗ(t) ≥ 0, hence

f (p (t− 1)) = ṗ(t) + p(t) > 0 and necessarily p(t− 1) > 0. We claim that p (t− 1) > 0

holds also for t ∈ [z0,, z1]. If not, then there exists z∗ ∈ [z0,, z1] so that p (z∗ − 1) = 0,

which contradicts Γ (z∗) 6= (0, 0)tr. Therefore

Γ(t) ∈
{

(u, v) ∈ R2 : u ≥ 0, v > 0
}

for t ∈ [z0, t1] .

If t ∈ (z3, t0 + ω], then p(t) < 0, ṗ(t) ≤ 0, hence f (p (t− 1)) = ṗ(t) + p(t) < 0 and

p(t−1) < 0. It can be veri�ed in a similar manner that p(t−1) < 0 holds for t ∈ [z2, z3]
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and thus

Γ(t) ∈
{

(u, v) ∈ R2 : u ≤ 0, v < 0
}

for t ∈ [z2, t0 + ω] .

Since Γ is a simple closed curve and there exists no t ∈ [t0, t0 + ω] \ ([z0, t1] ∪ [z2, t0 + ω])

such that Γ(t) is on the ordinate-axis, we obtain that (0, 0)tr ∈ int (Γ).

Now take the periodic function q : R 3 t 7→ −p(t) ∈ R with minimal period ω and

consider the curve Γ′ : [t0, t0 + ω] 3 t 7→ πqt ∈ R2. Since f is odd, q is a solution

of Eq. (1.1). Clearly Γ′ (t) = −Γ (t) for all t ∈ [t0, t0 + ω]. Because (0, 0)tr ∈ int (Γ),

curves Γ and Γ′ intersect, that is t∗ ∈ [t0, t0 + ω] and t∗∗ ∈ [t0, t0 + ω] can be given with

Γ (t∗) = Γ′ (t∗∗). Set q̃ : R 3 t 7→ p (t+ t∗ − t∗∗) ∈ R. If q and q̃ are di�erent periodic

solutions of Eq. (1.1), then Proposition 2.4 implies πqt∗∗ 6= πq̃t∗∗ , that is Γ (t∗) 6= Γ′ (t∗∗),

a contradiction. So p (t+ t∗ − t∗∗) = −p (t) for all t. Necessarily t∗ − t∗∗ = ω/2. �

Note that we have an analogous result for special nonlinearity fK,0; it is shown in

Section 3 that for K > K∗, periodic solutions xΣ(a∗,0) : R → R and xΣ̃(ã,0) : R → R
of Eq. (3.1) are of monotone type and special symmetry. We conjecture that for case

ε = 0, all nontrivial periodic solutions of Eq. (3.1) are in possession of these properties.

Let K0 > 3 and K1 > K0 be �xed. Choose

δ = min
K0≤K≤K1

e1/K − 1

2 (K + 1)
> 0.

The next result is slightly more general than necessary in this paper. The stated

property uniformly holds for K in a compact interval.

Proposition 5.3. Assume µ = 1, K ∈ [K0, K1], ε ∈ (0, δ) and p : R → R is a nor-

malized LSOP solution of Eq. (3.1) with minimal period ω > 0. Then p is of monotone

type and special symmetry, and the following assertions hold.

(i) The zeros of p are simple.

(ii) ω ∈
(
1 + 1

K
, 2− 1

2K

)
.

(iii) maxt∈R p (t) > e1/K.

(iv) Choose tmax ∈ (−1, 0) with p (tmax) = maxt∈R p (t). Let t1 be the largest t ∈
(−1, tmax) with p (t) = 1, and let t4 be the smallest t ∈ (tmax,∞) with p (t) = 1. Then

ṗ (t) ≥ K − 2 for all t ∈ (t1 − δ, t1 + δ) ,

ṗ (t) ≤ −1

2
for all t ∈ (t4 − δ, t4 + δ) .

Let t2 be the largest t ∈ (t1, tmax) with p (t) = 1 + ε, and let t3 be the smallest

t ∈ (tmax, t4) with p (t) = 1 + ε.
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(v) If t2 + 2 < ω and t4 − t1 < 1− ω/2, then p0 ∈ Σ (U2
ε , ε) with

p0 = Σ
(
t3 + 2− ω, t1 − t4 +

ω

2
, t3 − t2, ε

)
.

(vi) If t2 + 2 < ω and t3 − t1 > 1− ω/2, then p0 ∈ Σ̃
(
Ũ2
ε , ε
)
with

p0 = Σ̃
(
t3 + 2− ω, t1 − t4 +

ω

2
, t3 − t2, ε

)
.

Proof. Assume p : R → R is a normalized LSOP solution of Eq. (3.1). By de�nition,

V (pt) = 2 for all t ∈ R. Proposition 5.1 and Proposition 5.2 imply p is of monotone

type and special symmetry. Setting tmin = tmax + ω/2, we have −p (tmax) = p (tmin) =

mint∈R p (t), p is monotone nondecreasing on intervals [tmin + kω, tmax + (k + 1)ω], and

monotone nonincreasing on intervals [tmax + kω, tmin + kω], k ∈ Z. By Proposition 2.4,

(p (t− 1) , p (t)) 6= (0, 0) for all t ∈ R.

Claim (i). ω ∈ (1, 2).

Proof. If ω ≥ 2, then tmin = tmax + ω/2 > −1 + ω/2 > 0. By the special sym-

metry, p (−1 + ω/2) = p (−1) = 0. The monotone property yields p (s) ≥ 0 for

s ∈ [−1,−1 + ω/2]. Consequently V (p0) = 0, a contradiction. Suppose ω ≤ 1.

Then −1 < tmax < tmin < −1 + ω ≤ 0, and p (−1 + ω) = 0, p (−1 + ω + s) > 0

for all s ∈ (0, η) for some η > 0. Clearly there is an arbitrarily small s > 0 with

ṗ (−1 + ω + s) > 0. Then from Eq. (3.1)

fK,ε (p (−1 + ω + s− 1)) = ṗ (−1 + ω + s) + p (−1 + ω + s) > 0

and p (−1 + ω + s− 1) > 1 follow. By continuity, p (−2 + ω) ≥ 1. Hence, by using

−2+ω ≤ −1, p (−1) = 0 and the monotone property of p, one obtains µ ∈ (−2 + ω,−1)

with p (µ) < 0. Then p has at least 3 sign changes on [−2 + ω,−1 + ω], a contradiction.

Therefore 1 < ω < 2. �

Claim (ii). p (0) < 0.

Proof. The equality p (0) = 0 contradicts Proposition 2.4 since p (−1) = 0. If

p (0) > 0, then by (3.1) and p (−1) = 0, ṗ (0) < 0. The monotone property of p yields

either p (s) ≥ 0 for all s ∈ [−1, 0] or ω < 1, a contradiction. Thus p (0) < 0. �

From p (0) < 0, by (3.1) and p (−1) = 0, ṗ (0) > 0 follows. Hence tmin < 0.

Set τ = ω − 1 ∈ (0, 1). It is easy to see that p (t) ≤ 0 for all t ∈ [0, τ ], and p (t) > 0

for all t ∈ (τ, τ + η) for some η > 0.
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De�ne t5 = t1 + ω/2, t8 = t4 + ω/2, t9 = t1 + ω and t12 = t4 + ω (see Fig. 9). Clearly,

t9 > τ . Note that z = −1 + ω/2 = τ−1
2
∈ (t4, t5) is also a negative zero of p.

Observe that 0 < ε < δ implies

ε <
1

K
and ε <

e
1
K

2K
.

Claim (iii). τ ∈ (t1 + 1, t4 + 1).

Proof. As p (0) < 0 and p is of type (0) on [0, t1 + 1],

(5.1) p(t) = p(0)e−t < 0 for all t ∈ [0, t1 + 1] .

So τ > t1 + 1. If p (t4 + 1) < 0, then on the one hand p (t) < 0 for all t ∈ [t4 + 1, z + 1]

(as p is of type (0) on [t4 + 1, z + 1]), on the other hand

z + 1 =
ω

2
∈
(
τ, τ +

ω

2

)
and p (t) ≥ 0 for all t ∈ [τ, τ + ω/2], a contradiction. If p (t4 + 1) = 0, then p (t) = 0

for all t ∈ [t4 + 1, z + 1]. By (τ + 1)-periodicity, p (t) = 0 follows for t ∈ [t4 − τ, z − τ ].

By the de�nitions of t1, t4 and z, the minimal zero of p in (−1, z] is in (t4, z]. As

z = (τ − 1) /2 > τ − 1 and thus z − τ > −1, this a contradiction. Consequently,

p (t4 + 1) > 0 and τ ∈ (t1 + 1, t4 + 1). �

Proofs of Assertions (i) and (ii). Assertion (i) is a direct consequence of Claim (iii).

Note that if t ∈ (t1 + 1, t4 + 1) with p (t) = 0, then

ṗ (t) = −p (t) + fK,ε (p (t− 1)) = fK,ε (p (t− 1)) > 0.

Hence τ is a simple zero of p, and it is the only zero in (t1 + 1, t4 + 1). By the special

symmetry of p, all zeros of p are simple, and −1, z, τ are the only zeros in [−1, τ ].

Assertion (ii) also follows from Claim (iii). Indeed, for t ∈ [τ, t9],

ṗ (t) = −p (t) + fK,ε (p (t− 1)) ≤ fK,ε (p (t− 1)) ≤ K.

Hence

(5.2) t9 − τ = t1 + ω − τ ≥ 1/K.

Applying (5.2) and τ > t1 + 1, we get

ω ≥ τ − t1 +
1

K
= τ − (t1 + 1) + 1 +

1

K
> 1 +

1

K
.
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For all t ∈ R, |p (t)| ≤ K by Proposition 2.6, and thus ṗ (t) ≥ −2K by Eq. (3.1). Hence

t4 ≤ z − 1

2K
< − 1

2K
,

and by Claim (iii),

ω = τ + 1 < t4 + 2 < 2− 1

2K
.

�

Claim (iv). maxt∈R p (t) ≥ e1/K.

Proof. We have already shown that p (t4 + 1) > 0. For t ∈ [t4 + 1, t5 + 1], p (t) =

p (t4 + 1) e−(t−t4−1), thus p strictly decreases on [t4 + 1, t5 + 1]. So t9 < t4 + 1. As

t4 + 1 + 1/K < t4 + ω = t12, we derive that [t4 + 1, t4 + 1 + 1/K] ⊂ [t9, t12) and thus

p (t4 + 1 + 1/K) ≥ 1.

From (5.2), t5 − t4 ≥ 1/K follows by special symmetry. So p is of type (0) on

[t4 + 1, t4 + 1 + 1/K] and thus

max
t∈R

p (t) ≥ p (t4 + 1) = p

(
t4 + 1 +

1

K

)
e

1
K ≥ e

1
K .

�

As a consequence of Claim (iv), maxt∈R p (t) > 1 + 1/K > 1 + ε and one may set t2
and t3, so that t2 is the maximal t ∈ (t1, tmax) with p (t) = 1 + ε and t3 is the minimal

t ∈ (tmax, t4) with p (t) = 1 + ε. De�ne t6 = t2 + ω/2, t7 = t3 + ω/2, t10 = t2 + ω and

t11 = t3 + ω (see Fig. 9).

Note that it is also veri�ed in the proof of the previous claim that

(5.3) t12 − (t4 + 1) >
1

K
.

Claim (v). ṗ (t) ≤ −1 for t ∈ [t4 + 1, t12], and thus t4 − t3 = t12 − t11 ≤ ε.

Proof. First note that t12 < τ + ω/2 < τ + 1. Hence for t ∈ [t4 + 1, t12], p (t) ≥ 1,

p (t− 1) ≤ 1, and

ṗ (t) = −p (t) + fK,ε (p (t− 1)) ≤ −p (t) ≤ −1,

which is our �rst assertion. In addition, using p (t12) = 1 and estimation (5.3), we

obtain that p (t12 − s) ≥ 1 + s for all 0 ≤ s ≤ 1/K. Hence t12 − t11 ≤ ε. �

Claim (vi). 1 + t2 < t9 and t10 < t3 + 1. In consequence, t2 − t1 ≤ ε/ (K − 2).
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Proof. It follows from the previous claim that p (t) ≥ 0 for all t ∈ [t3 + 1, t4 + 1].

Indeed, p (t) ≥ p (t4 + 1) − 2Kε > e1/K − 2Kε > 0 for all t ∈ [t3 + 1, t4 + 1] because

t4 − t3 ≤ ε, p (t4 + 1) ≥ e
1
K and ṗ (t) ≥ −2K for all t ∈ R. Hence ṗ (t) ≤ K for

t ∈ [t3 + 1, t4 + 1].

Suppose that t3 +1 ≤ t10, that is p (t3 + 1) ≤ 1+ε. Applying the facts that t4−t3 ≤ ε

and p strictly decreases on [t4 + 1, t12] (see Claim (v)), we obtain that

max
t∈R

p (t) = max
t∈[t3+1,t4+1]

p (t) ≤ 1 + ε+Kε = 1 + (K + 1) ε < e
1
K

by ε ∈ (0, δ), a contradiction to Claim (iv). Thus t10 < t3 + 1.

If t9 ≤ t2 + 1, then

t9 ≤ t2 + 1 < t2 + 1 +
1

K
< t2 + ω = t10 < t3 + 1

and hence for t ∈ [t2 + 1, t2 + 1 + 1/K],

ṗ (t) = −p (t) +K ≥ − (1 + ε) +K.

Thus

1 + ε = p (t10) ≥ p

(
t2 +

K + 1

K

)
≥ p (t2 + 1) +

K − 1− ε
K

≥ 1 +
K − 1− ε

K
,

which contradicts ε < δ. So 1 + t2 < t9.

As a result, ṗ (t) = −p (t) + K ≥ K − 2 for all t ∈ [t9, t10], and ε =
´ t10

t9
ṗ (s) ds ≥

(K − 2) (t10 − t9). As t2 − t1 = t10 − t9, the third statement follows. �

Claim (vii). t9 − (t2 + 1) > δ and t3 + 1− t9 > δ.

Proof. Applying p (t1 + 1) < 0 by (5.1), t2 − t1 ≤ ε/ (K − 2) by Claim (vi) and

ṗ (t) ≤ 2K for all t ∈ R, we �nd p (t2 + 1) < 2Kε/ (K − 2). Therefore

1− 2K

K − 2
ε < p (t9)− p (t2 + 1) =

ˆ t9

t2+1

ṗ (s) ds ≤ 2K (t9 − t2 − 1) ,

and we obtain that

(5.4) t9 − (t2 + 1) >
1

2K
− ε

K − 2
> δ.

Claim (iv) implies that max p (t) ≥ e1/K . Claim (vi) gives that t9 < t3 + 1 < t4 + 1 <

t12. For t ∈ [t9, t4 + 1],

ṗ (t) = −p (t) + fK,ε (p (t− 1)) ≤ −p (t) +K ≤ K − 1.
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Figure 9. The plot of p in the proof of Proposition 5.3

In addition, p strictly decreases on [t4 + 1, t12] by Claim (v), that is maxt∈R p (t) =

maxt∈[t9,t4+1] p (t). So, by using Claim (v) again, we obtain that

e
1
K ≤ max

t∈R
p (t) = max

t∈[t9,t4+1]
p (t) ≤ 1 + (K − 1) (t4 + 1− t9)

= 1 + (K − 1) (t3 + 1− t9 + t4 − t3)

≤ 1 + (K − 1) (t3 + 1− t9) + (K − 1) ε,

from which

(5.5) t3 + 1− t9 ≥
e1/K − 1

K − 1
− ε > e1/K − 1

2 (K + 1)
≥ δ

follows. �

Proof of Assertion (iv). Note that if t ≥ t12, then ṗ (t) ≥ −2K and

p (t) ≥ 1− 2K (t− t12) .

Thus

(5.6) p (t) ≥ 1/2 for all t ∈
[
t12, t12 +

1

4K

]
.

Then Claim (vii) implies that for t ∈ (t9 − δ, t9 + δ), t − 1 ∈ (t2, t3). Also, p (t) ≤
p (t9) + δmax ṗ (t) ≤ 1 + 2Kδ ≤ 2 for t ∈ (t9 − δ, t9 + δ). Hence

ṗ (t) = −p (t) + fK,ε (p (t− 1)) ≥ −2 +K for t ∈ (t9 − δ, t9 + δ) .
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As t12− (t4 + 1) = t4 +ω− (t4 + 1) > 1/K > δ, Claim (v) and p (t12) = 1 imply that

p (t) ≥ 1 and ṗ (t) ≤ −1
2
for t ∈ (t12 − δ, t12]. It was pointed out in the proof of Claim

(iv) that t4 + 1/K ≤ t5 < 0. In consequence,

t12 + δ − 1 = (t4 + 1 + τ) + δ − 1 = τ + t4 + δ ≤ τ + t5 < τ

that is t− 1 ∈ (t4, τ) for all t ∈ [t12, t12 + δ). Thus from (5.6) we conclude that

ṗ (t) = −p (t) + fK,ε (p (t− 1)) ≤ −1

2
+ 0 = −1

2
, t ∈ [t12, t12 + δ) .

Statement (iv) follows by periodicity. �

Proofs of Assertions (v) and (vi). Suppose t2 + 2 < ω and t4 < t1 + 1 − ω/2. Then
t2 + 1 < ω − 1 = τ, t10 < t9 + δ < t3 + 1 and

t4 + 1 < t11 < t12 = t4 + ω < t1 + 1 + ω/2 = t5 + 1.

It follows that p is of type (K) on [τ, t3 + 1], it is of type (0) on [t4 + 1, t5 + 1]. The

periodicity of p implies that p is of type (0) on [t3, t4]. Therefore p is of type (0, 1 + ε)

on [t3 + 1, t4 + 1]. By periodicity and special symmetry, p is of type (−K) on [t5, t6],

and it is of type (−K,−1) on [t5 + 1, t6 + 1]. The special symmetry and monotonicity

yield p0 = pω ∈ Σ (U2
ε , ε) with

p0 = Σ
(
t3 + 2− ω, t1 − t4 +

ω

2
, t3 − t2, ε

)
.

The case t2 +2 < ω and t3−t1 > 1−ω/2 is analogous. Note that under these conditions

t2 + 1 < τ , t10 < t3 + 1 and t5 + 1 < t11. �

6. On the Number of Periodic Solutions

Set µ = 1. We study the exact number of LSOP solutions of Eq. (1.1) �rst for

nonlinearity fK,0 with K > 0, then for f 7,ε with ε > 0 small, �nally for those feedback

functions, that are close to f 7,ε in C1
b -norm. As a consequence, we prove Theorem 1.1.

For simplicity, we use notations introduced in Section 3 - without repeating de�ni-

tions.

6.1. The number of periodic solutions for the step function. As a preliminary

result, we show thatK has to be su�ciently large so that Eq. (3.1) has periodic solutions

of monotone type and special symmetry.

Proposition 6.1. Suppose K > 0, ε ∈ [0, 1), p : R → R is a nontrivial periodic

solution of Eq. (3.1), and p is of monotone type and special symmetry. Then K > 1
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and
ω

2
≥ 2 ln

K

K − 1
+ ln

K + 1

K
,

where ω > 0 denotes the minimal period of p.

Proof. Let p : R → R be a periodic solution of Eq. (3.1) of monotone type and special

symmetry and with minimal period ω > 0. It is no restriction to assume that p

is normalized. Then p (−1) = p (−1 + ω/2) = 0. Clearly, maxt∈R p (t) > 1 as ẋ (t) =

−x (t) has no periodic solutions. Then there exists (c1, c2, c3) ∈ (0, 1)3 with c1+c2+c3 =

ω/2 so that p (−1 + c1) = p (−1 + c1 + c2) = 1, p is nondecreasing on [−1,−1 + c1]

with range [0, 1], p (t) > 1 for t ∈ (−1 + c1,−1 + c1 + c2) and p is nonincreasing on

[−1 + c1 + c2,−1 + ω/2] with range [0, 1]. The choice of constants ci and the special

symmetry of p imply the following: if p (t) > 1 for all t ∈ I, where I ⊂ R is an interval,

then the length of I is not greater than c2.

As ṗ (t) ≥ 0 almost everywhere on [−1,−1 + c1],

fK,ε (p (t− 1)) = ṗ (t) + p (t) > 0 for t ∈ (−1,−1 + c1] ,

that is p (t) > 1 for t ∈ (−2,−2 + c1]. We conclude that c2 ≥ c1.

Obviously, (etp (t))
′

= etfK,ε (p (t− 1)) almost everywhere on R. Integrating on

[−1,−1 + c1], we get

e−1+c1 =

ˆ −1+c1

−1

esfK,ε (p (s− 1)) ds ≤ K

ˆ −1+c1

−1

esds = K
[
e−1+c1 − e−1

]
,

thus 1 ≤ K (1− e−c1). As 1 − e−c1 < 1, necessarily K > 1 and c1 ≥ ln (K/(K − 1)).

Integrating on [−1 + c1 + c2,−1 + c1 + c2 + c3], we obtain that

−e−1+c1+c2 ≥ −K
ˆ −1+c1+c2+c3

−1+c1+c2

esds = −K
[
e−1+c1+c2+c3 − e−1+c1+c2

]
,

hence 1 ≤ K (ec3 − 1) and c3 ≥ ln ((K + 1) /K).

Therefore
ω

2
= c1 + c2 + c3 ≥ 2 ln

K

K − 1
+ ln

K + 1

K
.

�

Corollary 6.2. For K ∈ (0, 3] and ε = 0, Eq. (3.1) admits no LSOP solutions.

Proof. It is excluded by the previous proposition that we have LSOP solutions for

K ∈ (0, 1] and ε = 0. Suppose K ∈ (1, 3], ε = 0 and p : R→ R is an LSOP solution of

Eq. (3.1) with minimal period ω < 2. Then Proposition 6.1 yields that

1 >
ω

2
≥ 2 ln

K

K − 1
+ ln

K + 1

K
= ln

K (K + 1)

(K − 1)2 ,
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that is

e >
K (K + 1)

(K − 1)2 = 1 +
3

K − 1
+

2

(K − 1)2 .

This is a second order inequality for z = 1/ (K − 1), hence the solution formula gives

that

z1 =
−3−

√
8e+ 1

4
<

1

K − 1
< z2 =

−3 +
√

8e+ 1

4
.

The �rst inequality is clearly satis�ed as K > 1 and z1 < 0. The second inequality

implies K > 1 + 1/z2 > 3, a contradiction. �

Recall from Remarks 3.4 and 3.14 that ϕ ∈ C is in Σ (U1
0 , 0) = Σ̃

(
Ũ1

0 , 0
)
if and only

if ϕ (−1) = 0 and there there exist −1 < s1 < s2 < s3 < 0 so that xϕ is of type (K) on

[−1, s1], of type (0) on [s1, s2], of type (−K) on [s2, s3] and of type (0) on [s3, 0].

Proposition 6.3. Assume K > 3, ε = 0 and x : R → R is a nontrivial periodic

solution of Eq. (3.1), x is of special symmetry and x0 ∈ Σ (U1
0 , 0) = Σ̃

(
Ũ1

0 , 0
)
. Then

x (s2) = 1 implies K = K∗.

Proof. Assume that x satis�es the conditions of the proposition with x (s2) = 1.

Then using (3.4) and the de�nitions of I1 and I2, we get

(6.1) x (s1) = e−s1I1 = K
(
1− e−a1

)
and

(6.2) ea2 = ea2x (s2) = ea2e−s2I2 = K
(
1− e−a1

)
.

From (3.4), the de�nition of I3 and relation (6.2) it follows that

(6.3) x (s3) = e−s3I3 = K
(
1− e−a1

)
e−a2−a3 +K

(
e−a3 − 1

)
= e−a3 +K

(
e−a3 − 1

)
.

Let −1 < t1 = t2 < t3 = t4 < . . . be the consecutive times for which x (ti) ∈ {−1, 1}.
As x strictly increases on [−1, s1], strictly decreases on [s1, s2], maxt∈R x (t) > 1 and

x (s2) = 1, we obtain that −1 < t1 < s1 and t3 = s2. Similarly, s2 < t5 < s3. By

special symmetry, x (s3) = −x (s1), and x (s2) = −x (t1 + 1) = 1. So combining (6.1)

and (6.3), we get

(6.4) ea3 =
K + 1

K
ea1 .

As in the proof of Proposition 3.3, we can show that

x (t1 + 1) =
K − 1

K
I3.
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Using x (t1 + 1) = −1, the de�nition of I3, relations (6.2) and (6.4), it follows that

(6.5) −1 =
K − 1

e

[
ea1 − 1 + ea1+a2 (1− ea3)

]
=
−1

e

(
K2 − 1

)
(ea1 − 1)2 .

As x is periodic, a2 = t5 − t4 (see the remark preceding Proposition 3.6). One may

show analogously to the proof of Proposition 3.6 that

a2 = t5 − t4 = ln
I2 +Kes2

(K − 1) I1

= ln
ea1 − 1 + ea1+a2

(K − 1) (ea1 − 1)
.

Combining this relation with (6.2), we get that a1 is the following function of K:

a1 = ln
K (K − 1)

K2 − 2K − 1
.

Substituting the last result to (6.5), we obtain that equation

(K2 − 1) (K + 1)2

(K2 − 2K − 1)2 = e

holds for K, which equation has a unique solution on (3,∞) and that is K∗ (see the

de�nition of K∗ before Proposition 3.8). So K = K∗. �

Proposition 6.4. Assume K ∈ (3,∞) \ {K∗}, ε = 0 and x : R → R is a normalized

LSOP solution of Eq. (3.1). Then K > K∗, and either x0 = Σ (a∗, 0), or x0 = Σ̃ (ã, 0),

where Σ (a∗, 0) and Σ̃ (ã, 0) are given in Section 3.

Proof. Let τ denote the smallest zero of x on [0,∞) with the property that x > 0 on

(τ, τ + η) with some η > 0 small. Since x is normalized periodic solution with minimal

period in (1, 2), and as it is of special symmetry and of monotone type, the minimal

period is ω = τ + 1 and x(0) ≤ 0 .

Set tmax ∈ (−1, 0) so that x (tmax) = maxt∈R x (t) and choose tmin = tmax + ω/2.

Clearly x (tmin) = mint∈R x (t). As equation ẋ (t) = −x (t) has no periodic solution,

x (tmax) = −x (tmin) > 1.

As x is of monotone type and x (tmax) = −x (tmin) > 1, there exists t1 ∈ (−1, tmax)

maximal with x (t) = 1 and t3 ∈ (tmax, tmin) minimal with x (t) = 1. Then t5 = t1 +ω/2

is the maximal t ∈ (tmax, tmin) with x (t) = −1 and t7 = t3 + ω/2 is the minimal

t ∈ (tmin, τ) with x (t) = −1.

Solution x must be piecewise of type (i) with i ∈ {−K, 0, K}. To be more precise,

x is of type (0) on interval [0, t1 + 1], of type (K) on [t1 + 1, t3 + 1], of type (0) on

[t3 + 1, t5 + 1], of type (−K) on [t5 + 1, t7 + 1] and of type (0) on [t7 + 1, τ + 1]. If

τ < t3 + 1, then (t3 + 1− τ, t5 − t3, t7 − t5) ∈ (0, 1)3 and

(t3 + 1− τ) + (t5 − t3) + (t7 − t5) = t7 + 1− τ < 1,
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therefore

(t3 + 1− τ, t5 − t3, t7 − t5, 0) ∈ U1 = Ũ1.

If condition t1 + 1 < τ is satis�ed besides τ < t3 + 1, then

x0 = xτ+1 = Σ (t3 + 1− τ, t5 − t3, t7 − t5, 0) = Σ̃ (t3 + 1− τ, t5 − t3, t7 − t5, 0)

by Remarks 3.4 and 3.14.

So we claim that τ ∈ [t1 + 1, t3 + 1). As x is of type (0) on [0, t1 + 1], x(t) = x(0)e−t ≤
0 for t ∈ [0, t1 + 1]. So τ ≥ t1 + 1. Suppose for contradiction that x (t3 + 1) ≤ 0. Since

ẋ (t) ≤ −x (t) +K for almost all t ≥ −1 and x (−1) = 0, estimate

x (t) ≤ K
(
1− e−(t+1)

)
< K

holds for all t ≥ −1. Then as

(6.6) ẋ (t) = −x (t) +K > 0, t1 + 1 < t < t3 + 1,

and as

(6.7) x(t) = x (t3 + 1) e−(t−t3−1), t3 + 1 ≤ t ≤ t5 + 1,

we get that x is nondecreasing and nonpositive on [t1 + 1, t5 + 1]. So x(t) ≤ 0 on

[t5, t5 + 1]. On the other hand, for t5 + ω/2 ∈ [t5, t5 + 1] we have x (t5 + ω/2) =

x (t1 + ω) = 1, a contradiction. Thus x (t3 + 1) > 0 , τ ∈ [t1 + 1, t3 + 1) and xτ+1 ∈
Σ (U1

0 , 0) = Σ̃
(
Ũ1

0 , 0
)
.

Equations (6.6) and (6.7) now imply that x strictly increases on [t1 + 1, t3 + 1] and

strictly decreases on [t3 + 1, t5 + 1]. Thus x (t3 + 1) is a local maximum of x. As x is

of monotone type and maxt∈R x (t) > 1, x (t3 + 1) > 1 follows. Also, x (t5 + 1) > 0 by

(6.7). By special symmetry,

x (t7 + 1) = x (t3 + ω/2 + 1) = −x (t3 + 1) < −1.

Remarks 3.4 and 3.14 yield that if x (t5 + 1) < 1, then x0 = xτ+1 ∈ Σ (U2
0 , 0); if

x (t5 + 1) > 1, then x0 = xτ+1 ∈ Σ̃
(
Ũ2

0 , 0
)
. The case x (t5 + 1) = 1 is excluded by

Proposition 6.3.

We have already veri�ed that x (t1 + 1) < 0 and x (t3 + 1) > 0. If x0 ∈ Σ (U2
0 , 0),

then x (t1 + 1) = −x (t5 + 1) > −1, so Remark 3.4 yields that x0 ∈ Σ (U3
0 , 0) and thus

(t3 + 1− τ, t5 − t3, t7 − t5) is a �xed point of F (·, 0). Proposition 3.8 implies K > K∗

and x0 = Σ (a∗, 0). Similarly, if x0 ∈ Σ̃
(
Ũ2

0 , 0
)
, then x0 ∈ Σ̃

(
Ũ3

0 , 0
)
. By Proposition

3.18, K > K∗ and x0 = Σ̃ (ã, 0). �

As a direct consequence of Corollary 6.2 and Proposition 6.4, we get the following.
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Theorem 6.5. For K ∈ (0, K∗) and ε = 0, Eq. (3.1) has no LSOP solutions. For

K > K∗ and ε = 0, there are exactly two normalized LSOP solutions of Eq. (3.1).

It can be also shown that in case K = K∗ and ε = 0, there is exactly one normalized

LSOP solution.

6.2. There are two LSOP solutions for f 7,ε with ε > 0, and for close nonlin-

earities. Recall that if K = 7 and ε ∈ (0,min (ε0, ε̃0)), where ε0 and ε̃0 are given by

Propositions 3.11 and 3.18, respectively, then Eq. (3.1) admits two LSOP solutions with

initial functions Σ (a∗ (ε) , ε) and Σ̃ (ã (ε) , ε).

Proposition 6.6. Let K = 7. A threshold number ε∗ ∈ (0,min (ε0, ε̃0)) can be given

so that for ε ∈ (0, ε∗), x
Σ(a∗(ε),ε) : R→ R and xΣ̃(ã(ε),ε) : R→ R are the only normalized

LSOP solutions of Eq. (3.1).

Proof. Suppose for contradiction that there exists a sequence (εn)∞1 in (0,min (ε0, ε̃0))

converging to 0 as n → ∞ and a sequence of functions (xn)∞0 so that for n ≥ 0,

xn : R 7→ R is a normalized LSOP solution of (3.1) with K = 7 and ε = εn, and

xn0 /∈
{

Σ (a∗ (εn) , εn) , Σ̃ (ã (εn) , εn)
}
.

Let ωn > 0 denote the minimal period of xn. According to Proposition 5.3 (ii), ωn ∈
(8/7, 27/14) for all su�ciently large n.

For all t ∈ R and n ∈ N, Proposition 2.6 implies |xn(t)| ≤ 7, therefore Eq. (3.1)

gives |ẋn(t)| ≤ 14. Applying the Arzelà�Ascoli theorem and changing to a subsequence

if necessary, we may assume that there is ω ∈ [8/7, 27/14] and a continuous function

x : R→ R such that ωn → ω as n→∞, and xn (t)→ x (t) as n→∞ uniformly on all

compact subsets of the real line. It is easy to see that x is periodic with minimal period

ω, it is of monotone type and special symmetry. In addition, x (−1) = x (−1 + ω/2) = 0

and x (t) ≥ 0 for t ∈ [−1,−1 + ω/2]. By Proposition 5.3 (iii),

max
t∈R

x (t) ≥ lim inf
n→∞

max
t∈R

xn (t) ≥ e
1
7 .

Proposition 5.3 (iv) gives that if t0 ∈ R and |x (t0)| = 1, then

lim inf
h→0

∣∣∣∣x (t+ h)− x (t)

h

∣∣∣∣ ≥ 1

2
for all t ∈ (t0 − δ, t0 + δ)

with constant δ > 0 de�ned before Proposition 5.3. Therefore there exist unique t1, t4 ∈
[−1,−1 + ω/2] with −1 < t1 < t4 < −1+ω/2 such that x (t1) = x (t4) = 1. In addition,

for all γ ∈ (0, δ/2) �xed, |x (t)− 1| ≥ γ for all t ∈ [−1,−1 + ω/2] with |t− t1| ≥ 2γ
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and |t− t4| ≥ 2γ. Set

Sγ = {s ∈ [−1, 0] : x (s) ∈ (−1− γ,−1 + γ) ∪ (1− γ, 1 + γ)} .

As x is the limit of LSOP solutions, S is the union of at most 4 intervals. Our previous

observations and the special symmetry of x imply that for the Lebesgue measure µ (Sγ)

of Sγ, we have estimation µ (Sγ) ≤ 4 · 4γ = 16γ. Similarly, the measure of

Snγ = {s ∈ [−1, 0] : xn (s) ∈ (−1− γ,−1 + γ) ∪ (1− γ, 1 + γ)}

is not larger than 16γ for all su�ciently large n by Proposition 5.3 (iv).

We claim that for t ∈ [0, 1],

lim
n→∞

ˆ t

0

e−(t−s)f 7,εn (xn (s− 1)) ds =

ˆ t

0

e−(t−s)f 7,0 (x (s− 1)) ds,

that is to each η > 0 small, there corresponds n∗ ≥ 1 so that∣∣∣∣ˆ t

0

e−(t−s) [f 7,0 (x (s− 1))− f 7,εn (xn (s− 1))
]
ds

∣∣∣∣ ≤
ˆ t

0

e−(t−s) ∣∣f 7,0 (x (s− 1))− f 7,0 (xn (s− 1))
∣∣ ds

+

ˆ t

0

e−(t−s) ∣∣f 7,0 (xn (s− 1))− f 7,εn (xn (s− 1))
∣∣ ds < η

for all n ≥ n∗ and for all t ∈ [0, 1]. Set η > 0 and 0 < γ < min {δ/2, η/224} . There
exists n1 = n1 (γ) ≥ 1 so that for n ≥ n1, we have

f 7,0 (x (s− 1))− f 7,0 (xn (s− 1)) = 0 for s− 1 /∈ Sγ,

and ∣∣f 7,0 (x (s− 1))− f 7,0 (xn (s− 1))
∣∣ ≤ 7 for s− 1 ∈ Sγ.

Therefore the �rst term is not larger than 7 · 16γt ≤ 112γ < η/2 for n ≥ n1. Also there

is n2 = n2 (γ) ≥ 1 so that εn < γ for all n ≥ n2. Then for s− 1 /∈ Snγ ,

f 7,0 (xn (−1 + s))− f 7,εn (xn (−1 + s)) = 0,

and for s− 1 ∈ Snγ , ∣∣f 7,0 (xn (−1 + s))− f 7,εn (xn (−1 + s))
∣∣ ≤ 7.

So the second term is is not larger than 7 · 16γt ≤ 112γ < η/2 if n ≥ n2. Set

n∗ = min {n1, n2}. The claim is veri�ed.
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It follows that for all t ∈ [0, 1],

x (t) = lim
n→∞

xn (t) = lim
n→∞

(
e−txn (0) +

ˆ t

0

e−(t−s)f 7,εn (xn (s− 1)) ds

)
=e−tx (0) +

ˆ t

0

e−(t−s)f 7,0 (x (s− 1)) ds,

that is, x satis�es Eq. (3.1) with K = 7 and ε = 0 for all t ∈ [0, 1]. It is analogous to

show that x satis�es the equation on [1, 2]. As xω = x0, we gain that x is a solution on

R.
Proposition 6.4 yields x0 = Σ (a∗, 0) or x0 = Σ̃ (ã, 0). Suppose x0 = Σ (a∗, 0) for

example. Note that as x is of special symmetry, the construction of Σ (a∗, 0) yields that

a∗ =
(
t4 + 2− ω, t1 − t4 +

ω

2
, t4 − t1

)
.

Proposition 5.3 gives that if n is large enough, then there exist uniquely de�ned

−1 < tn1 < tn2 < tn3 < tn4 < 0 with

xn (tn1 ) = 1, xn (tn2 ) = 1 + εn, xn (tn3 ) = 1 + εn, xn (tn4 ) = 1.

Also, limn→∞ t
n
1 = limn→∞ t

n
2 = t1 and limn→∞ t

n
3 = limn→∞ t

n
4 = t4.

It follows from the de�nition of U3
0 , that t1 + 2 < ω and t4 < t1 + 1 − ω/2. Thus

there exists n∗∗ ≥ 1 so that for n ≥ n∗∗, we have tn2 + 2 < ωn and tn4 < tn1 + 1 − ωn/2.
By Proposition 5.3 (v), xn0 = Σ (an, εn) for n ≥ n∗∗, where

an =

(
tn3 + 2− ωn, tn1 − tn4 +

ωn

2
, tn3 − tn2

)
is a �xed point of F (·, εn). According to the proof of Proposition 3.11, there is a

neighborhood N of a∗ in (0, 1)3 so that the �xed point of F (·, ε) is unique in N for

ε ∈ [0, ε0). As an is arbitrary close to a∗, we may suppose that an ∈ N and thus

an = a∗ (εn), a contradiction to our initial assumption.

At last suppose x0 = Σ̃ (ã, 0). Then with the aid of Proposition (5.3) (vi), one

can verify the existence of ñ ≥ 1 so that xn0 = Σ̃ (ã (εn) , εn) for n ≥ ñ, which is a

contradiction again. �

Consider K = 7 and ε ∈ (0,min (ε0, ε̃0)). Proposition 4.5 implies that there exists

δ0 = δ0 (ε) > 0 so that if f ∈ C1
b (R,R) with ‖f − f 7,ε‖C1

b
< δ0, and (H1) holds for

f , then Eq. (1.1) with µ = 1 and nonlinearity f has two normalized LSOP solutions

p = p (f) : R→ R and q = q (f) : R→ R.

Proposition 6.7. Set µ = 1, K = 7. To each ε ∈ (0, ε∗), where ε∗ ∈ (0,min (ε0, ε̃0))

is given by Proposition 6.6, there corresponds δ1 = δ1 (ε) ∈ (0, δ0 (ε)) such that if

61



f ∈ C1
b (R,R) satis�es (H1), and ‖f − f 7,ε‖C1

b
< δ1, then Eq. (1.1) admits at most two

normalized LSOP solutions.

Proof. Suppose for contradiction that a sequence (fn)∞n=0 exists in C1
b (R,R) with∥∥fn − f 7,ε

∥∥
C1
b

< 1/n for n ∈ N

so that for n ∈ N, fn satis�es (H1), and the equation

(6.8) ẋ (t) = −x (t) + fn (x (t− 1))

has a normalized LSOP solution xn : R→ R with xn0 /∈ {p0 (fn) , q0 (fn)}, where LSOP
solutions p (fn) and q (fn) are given by Proposition 4.5. Note that ‖fn − f 7,ε‖C1

b
< δ0

for all large n, hence it is no restriction to assume that p (fn) and q (fn) exist for all

n ≥ 1. Let ωn ∈ (1, 2) denote the minimal period of xn, n ∈ N. Since

sup
x∈R
|fn (x)| ≤ ‖fn‖C1

b
≤
∥∥f 7,ε

∥∥
C1
b

+ 1 <∞, n ∈ N,

Proposition 2.6 yields that ‖xnt ‖ ≤ ‖f 7,ε‖C1
b

+ 1 and thus ‖ẋnt ‖ ≤ 2 ‖f 7,ε‖C1
b

+ 2 for

all n ∈ N and t ∈ R. Applying the Arzelà�Ascoli theorem, we may suppose that

ωn → ω ∈ [1, 2] as n → ∞, and xn converges to a continuous function x : R → R
uniformly on each compact subset of R. Then it is easy to see that x is a solution

of Eq. (3.1) with minimal period ω ∈ [1, 2]. Proposition 2.4 excludes the possibility

that the period is 1, Proposition 2.4 and Proposition 5.2 exclude the possibility that

the period is 2. So ω ∈ (1, 2). As x is necessary of monotone type, this yields that

V (xt) = V (x0) = 2 for all t ∈ R. As xn, n ∈ N, is an LSOP solution, it is also easy

to see that x is of large amplitude, i. e. x (R) ⊃ (ξ−1, ξ1). We conclude that x is an

LSOP solution of (3.1). Hence Proposition 6.6 implies we may assume that x0 is either

Σ (a∗ (ε) , ε) or Σ̃ (ã (ε) , ε). If n is chosen large enough, then fn is arbitrarily close to

f 7,ε in C1
b norm, xn0 ∈ {x0} + V and ωn ∈ (ω − ν, ω + ν), where V and ν are given by

Proposition 2.1. So Proposition 2.1 gives xn equals p (fn) or q (fn), a contradiction to

our initial assumption. �

The proof of Theorem 1.1. Fix µ = 1, K = 7 and ε ∈ (0, ε∗). Choose a

nonlinearity f ∈ C1
b (R,R) satisfying (H1) so that ‖f − f 7,ε‖C1

b
< δ1 (ε) < δ0 (ε). Then

Theorem 1.1 follows from Propositions 4.5 and 6.7. �

7. Rapidly Oscillatory Periodic Solutions

We give conditions for the nonexistence of rapidly oscillatory solutions.
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Proposition 7.1. For K ≤ 8 and ε ∈ (0, 1), Eq. (3.1) has no periodic solution p : R→
R with V (pt) ≥ 4 for t ∈ R.

Proof. Propositions 5.1, 5.2 and 6.1 give that Eq. (3.1) has no periodic solution for

K ∈ (0, 1]. Set K > 1 and ε ∈ (0, 1). If p : R → R is a periodic solution of Eq. (3.1),

then it is of monotone type and of special symmetry. Hence if V (pt) ≥ 4, then 3ω/2 < 1,

where ω > 0 is the minimal period of p. Proposition 6.1 gives that

1 >
3

2
ω ≥ 6 ln

K

K − 1
+ 3 ln

K + 1

K
> 9 ln

K + 1

K
,

that is

1

K
< e

1
9 − 1 =

1

9
+

(
1
9

)2

2!
+

(
1
9

)3

3!
+ ...

<
1

9

(
1 +

1

9
+

(
1

9

)2

+ ...

)
=

1

9

1

1− 1
9

=
1

8
.

Thus K > 8 and the statement is veri�ed. �

Proposition 7.2. Set µ = 1, K = 7. To each ε ∈ (0, ε∗), where ε∗ ∈ (0,min (ε0, ε̃0))

is given by Proposition 6.6, there corresponds δ2 = δ2 (ε) > 0 such that if f ∈ C1
b (R,R)

satis�es hypothesis (H1), and ‖f − f 7,ε‖C1
b
< δ2, then Eq. (1.1) with µ = 1 and nonlin-

earity f has no periodic solutions oscillating rapidly around 0.

Proof. Suppose for contradiction that there is a sequence (fn)∞1 in C1
b (R,R) with

‖f − f 7,ε‖C1
b
→ 0 as n→∞ so that for n ∈ N, (H1) holds for fn, and

ẋ (t) = −x (t) + fn (x (t− 1))

has a periodic solution pn : R → R, with V (pnt ) > 2 for all t ∈ R. Applying the

Arzelà�Ascoli theorem, we get that there exists a continuous function p : R → R such

that pn, ṗn converge to p, ṗ uniformly on compact subsets of R, respectively. Then p is
a periodic solution of Eq. (3.1) with feedback function f 7,ε.

As V (pnt ) > 0 for all n ∈ N and t ∈ R, it is clear that maxt∈R p
n (t) > 0 for all

n ≥ 1. Applying the argument in the proof of Proposition 2.5 for periodic solution pn,

one obtains that maxt∈R p
n (t) > ξ1 > 1 for all n ≥ 1. Hence maxt∈R p (t) > 0. Using

this estimate and the reasoning in the proof of Proposition 2.5 for the second time,

maxt∈R p (t) > ξ1 follows. Similarly, mint∈R p (t) < ξ−1.

As p is periodic, V (pt) is the same constant for all t ∈ R. As p oscillates around 0,

V (pt) ≥ 2 for all t ∈ R. If V (pt) ≡ 2, then p is an LSOP solution, and it is either

xΣ(a∗(ε),ε) or xΣ̃(ã(ε),ε) up to time translation. By Proposition 5.3, the zeros of p are
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simple. As pn → p and ṗn → ṗ uniformly on compact subsets of R, we obtain that

V (pnt ) ≡ 2 for all large n, a contradiction to the choice of pn. V (pt) > 4 contradicts

Proposition 7.1. The proof is complete. �

8. Connecting Orbits

This section assumes that we are in the situation of Theorem 1.1, namely µ = 1,

f ∈ C1 satis�es (H1), furthermore p : R→ R and q : R→ R are the normalized LSOP

solutions of Eq. (1.1) with p(R) ( q(R) ⊂ (ξ−2, ξ2).

Consider the C1-smooth Poincaré return map P de�ned in a small neighborhood

of p0 in H = {ϕ ∈ C : ϕ (−1) = 0} with �xed point p0. Theorem 1.1 states that p0 is

hyperbolic and DP (p0) has exactly two eigenvalues λ1 > λ2 with absolute value greater

than 1. Let Hs and Hu be the closed subspaces of H chosen so that H = Hs ⊕ Hu,

Hs and Hu are invariant under L = DP (p0), and the spectra σs and σu of the induced

maps Hs 3 x 7→ Lx ∈ Hs and Hu 3 x 7→ Lu ∈ Hu are contained in {µ ∈ C : |µ| < 1}
and {µ ∈ C : |µ| > 1}, respectively. Then Hu is 2-dimensional (Appendix VII in [17]).

The unstable manifold. According to Appendix I in [17], there exist convex bounded

neighborhoods Ns, Nu of 0 in Hs, Hu, respectively, and a C1-map w : Nu → Hs with

range in Ns so that w (0) = 0, Dw (0) = 0, and the subset

Wu (p0) = {p0 + x+ w (x) : x ∈ Nu}

of C is equal to{
x ∈ p0 +Ns +Nu : there is a trajectory (xn)0

−∞ of P in

p0 +Ns +Nu with x0 = x and xn → p0 as n→ −∞} .

Wu (p0) is called the (2-dimensional) local unstable manifold of P at p0.

The leading unstable manifold. LetH1
u, H

2
u be the linear subspaces inHu generated by

v1, v2, the eigenvectors corresponding to λ1, λ2, respectively. Then Hu = H1
u⊕H2

u. Set β

so that 1 < λ2 < β < λ1. There exist δ0 > 0 and a C1−map w̃ : (−δ0, δ0) v1 → H2
u⊕Hs

with w̃ (0) = 0 and Dw̃ (0) = 0 such that for δ∗ ∈ (−δ0, δ0), there is a trajectory (xn)0
−∞

of P with x0 = p0 + w̃ (δ∗v1)+δ∗v1 and with β−n (xn − p0)→ 0 as n→ −∞. Moreover,

xn belongs to

Wu
1 (p0) = {p0 + w̃ (δv1) + δv1 : |δ| < δ0}

for n ≤ 0. Then Wu
1 (p0) is the leading unstable manifold of P at p0. It is a 1-

dimensional submanifold of Wu (p0).

Similarly, there is a Poincaré map (also denoted by P ) with �xed point q0. By

Theorem 1.1, DP (q0) has exactly one eigenvalue with absolute value greater than 1.
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Wu (q0) denotes the (1-dimensional) unstable manifold of P at q0. The characterization

of Wu (q0) is analogous to the one given for Wu
1 (p0).

The unstable set of the orbit Op = {pt : t ∈ R} is de�ned as

Wu (Op) = {x0 : x : R→ R is a solution of (1.1), α (x) exists and α (x) = Op} .

It is the forward extension of Wu (p0):

Wu (Op) = {xϕt : ϕ ∈ Wu (p0) , t ≥ 0} .

Set Wu (Oq) is de�ned and described analogously. We also introduce the leading un-

stable set

Wu
1 (Op) = {xϕt : ϕ ∈ Wu

1 (p0) , t ≥ 0} .

We say ϕ ≤ ψ for ϕ, ψ ∈ C if ϕ (s) ≤ ψ (s) for all s ∈ [−1, 0]. Relation ϕ < ψ holds

if ϕ ≤ ψ and ϕ 6= ψ. In addition, ϕ � ψ if ϕ (s) < ψ (s) for all s ∈ [−1, 0]. Relations

�≥�, �>� and ��� are de�ned analogously.

The semi�ow Φ is monotone in the following sense.

Proposition 8.1. Suppose ϕ, ψ ∈ C with ϕ 6= ψ. Then xϕt 6= xψt for all t ≥ 0. If ϕ < ψ

(ϕ > ψ), then xϕt � xψt

(
xϕt � xψt

)
for all t > 1. In addition, if ϕ� ψ (ϕ� ψ), then

xϕt � xψt

(
xϕt � xψt

)
for all t ≥ 0.

The assertion follows easily from the variation-of-constant formula. For a proof we

refer to [26].

Since p (R) ⊂ (ξ−2, ξ2) and q (R) ⊂ (ξ−2, ξ2),

Wu (Op) ∪Wu (Oq) ⊂ A

by Proposition 8.1. Consequently, {xϕt : t ∈ R} is precompact for each ϕ ∈ Wu (Op) ∪
Wu (Oq).
We need a few more propositions before proving Theorem 1.2.

Let p0 denote the periodic solution of Eq. (3.1) with K = 7 and ε = 0 determined by

the unique �xed point a∗ of F (·, 0) in U3
0 .

Recall that if µ = 1 and K = 7, then for each ε ∈ (0, ε∗), there exists δ1 (ε) > 0 such

that if a nonlinearity f ∈ C1
b (R,R) satis�es (H1), and ‖f − f 7,ε‖C1

b
< δ1 (ε), then the

statement of Theorem 1.1 holds for f . Without loss of generality, we may assume that

δ1 (ε)→ 0+ as ε→ 0+. Hence we may assume that

(8.1) max
−1≤t≤2

∣∣p (t)− p0 (t)
∣∣→ 0 as ε→ 0 + .

We also have ξ1 → 1 and ξ2 → 7 as ε→ 0+.
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Proposition 8.2. Let r : R → R be a periodic solution of Eq. (1.1) either with range

in (0, ξ2) and with V
(
rt − ξ̂1

)
= 2 for all t ∈ R, or with range in (ξ−2, 0) and with

V
(
rt − ξ̂−1

)
= 2 for all t ∈ R. If ε > 0 is su�ciently small, then V (pt − rs) = 2 for

all t ∈ R and s ∈ R.

Proof. We consider the case when r has range in (0, ξ2) and V
(
rt − ξ̂1

)
= 2 for all

t ∈ R. The other case is analogous.
By Proposition 2.4, V (pt − rs) is the same constant for all t ∈ R and s ∈ R. Thus

it is su�cient to �nd a pair (t, s) ∈ R × R with V (pt − rs) = 2. It is obvious that

V (pt − rs) > 0 for all (t, s) ∈ R× R.
Let ω0, ω̄, ρ denote the minimal periods of p0, p, r, respectively. De�ne t1, s1, t4, s2, τ =

ω0 − 1 for p0 as in Section 3. Set z = −1 + ω0/2. Then p0 strictly increases on

[−1, s1], decreases on [s1, z], p0 (t) < 0 for t ∈ (z, τ), p0 (−1) = p0 (z) = p0 (τ) = 0 and

p0 (t1) = p0 (t4) = 1. As f ′ (x) > 0 for all x ∈ R, Theorem 7.1 in [22] implies that p is

strictly monotone between two extremum points. So there exist t̄1, s̄1, t̄4, z̄, τ̄ = ω̄ − 1

such that p strictly increases on [−1, s̄1], decreases on [s̄1, z̄], p (t) < 0 for t ∈ (z̄, τ̄),

p (−1) = p (z̄) = p (τ̄) = 0 and p (t̄1) = p (t̄4) = ξ1 (see Fig. 11). Property (8.1) implies

that t̄1 → t1, s̄1 → s1, t̄4 → t4, z̄ → z, τ̄ → τ as ε→ 0+.

From Section 3 we know that

τ − 1 > t1, 1 > τ − t4 >
ω0

2
>

1

2
and ω0 > 1.

Fix δ0 with

δ0 ∈
(
0,min

{
s1 − t1, z − t4, t4 − s1, τ − 1− t1, ω0 − 1

})
.

Choose ε0 so small that for each ε ∈ (0, ε0), τ̄ − 1 > t̄1, 1 > τ̄ − t̄4 > 1/2, ω̄ > 1 and

also

δ0 ∈ (0,min {s̄1 − t̄1, z̄ − t̄4, t̄4 − s̄1, τ̄ − 1− t̄1, ω̄ − 1}) .

hold.

Claim. There exists ε1 ∈ (0, ε0) such that for all ε ∈ (0, ε1),

(i) if r (t0 + σ) = ξ1 for some t0 ∈ [t̄1 + δ0, s̄1] and σ ∈ R, then r (σ + s) < p (s) for

all s ∈ [t0, s̄1] (see Fig. 10),

(ii) if r (t0 + σ) = ξ1 for some t0 ∈ [t̄4 + δ0, z̄] and σ ∈ R, then r (σ + s) > p (s) for

all s ∈ [t0, z̄],

(iii) if r (t0 + σ) = ξ1 for some t0 ∈ [s̄1, t̄4 − δ0] and σ ∈ R, then r (σ + s) < p (s) for

all s ∈ [s̄1, t0].
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Figure 10. The periodic solutions in Claim (i)

Proof of (i). For r, the di�erential inequality

ṙ (t) ≤ −r (t) + f (ξ2)

holds for all t ∈ R. Hence

r (σ + s) ≤ ξ1e
t0−s +

(
1− et0−s

)
f (ξ2) for s ≥ t0.

For a �xed t0 ∈ [t1 + δ0, s1], the right side of the inequality tends to 7−6et0−s as ε→ 0+

uniformly in s ∈ [t0, s1]. Using p0 (s) = 7− 6et1−s, s ∈ [t1, s1], one �nds

min
s∈[t0,s1]

(
p0 (s)−

(
7− 6et0−s

))
= 6

(
1− et1−t0

)
min

s∈[t0,s1]
et0−s ≥ 6

(
eδ0 − 1

)
et1−s1 > 0.

These facts and (8.1) imply Claim (i) for all su�ciently small ε > 0.

Assertions (ii) and (iii) of the Claim can be shown analogously, therefore we omit the

details.

Let ui, i ∈ {0, 1, 2, 3, 4}, be given so that u0 < u1 < u2 < u3 < u4, u4 = u0 +

ρ, r (u0) = r (u2) = ξ1, r (u1) = mint∈R r (t) > 0 and r (u3) = maxt∈R r (t) < ξ2.

Proposition 2.5 and Theorem 7.1 in [22] guarantee the existence of u0, .., u4 and the fact

that r strictly increases on [u1, u3] and strictly decreases on [u3, u5] with u5 = u1 + ρ.

We distinguish two cases according to the length of [u2, u4].

Case 1: u4 − u2 ≥ τ̄ − t̄4. As τ̄ − t̄4 > 1/2 by the choice of ε, u4 − u3 < τ̄ − t̄4 or

u3 − u2 < τ̄ − t̄4 holds because u4 − u2 < 1. So two subcases need to be considered.

Case 1.1: If u4 − u3 < τ̄ − t̄4, set y (t) = r (t− τ̄ + u4). Then y decreases on

[τ̄ − u4 + u3, τ̄ ], increases on [τ̄ − u4 + u1, τ̄ − u4 + u3], decreases on [τ̄ − u4 + u0, τ̄ − u4 + u1]

and

y (τ̄) = y (τ̄ − u4 + u2) = y (τ̄ − u4 + u0) = ξ1.

Case 1.1.1: If in addition, τ̄ − u4 + u2 ∈ [s̄1, t̄4], then p − y has one sign change

on [τ̄ − 1, τ̄ ] since y (t) < ξ1 for t ∈ (τ̄ − u4 + u0, τ̄ − u4 + u2), p (t) > ξ1 for t ∈
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(τ̄ − 1, τ̄ − u4 + u2), τ̄ −u4 +u0 < τ̄ − 1, p decreases on [τ̄ − u4 + u2, t̄4], y increases on

[τ̄ − u4 + u2, t̄4], and y (t) > ξ1 > p (t) for t ∈ (t̄4, τ̄) (see Fig. 11).

Case 1.1.2: If τ̄ −u4 +u2 < s̄1, then τ̄ −u4 +u2 ∈ (τ̄ − 1, s̄1). The choice of ε implies

t̄1 + δ0 < τ̄ − 1, hence τ̄ − u4 + u2 ∈ (t̄1 + δ0, s̄1), and Claim (i) can be applied to get

y (t) < p (t) for all t ∈ [τ̄ − u4 + u2, s̄1]. As τ̄ − u4 + u0 < τ̄ − 1, inequality y (t) < ξ1

holds for all t ∈ [τ̄ − 1, τ̄ − u4 + u2). Now it is obvious that p− y has exactly one sign

change on [τ̄ − 1, τ̄ ] (see Fig. 12).
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Figure 11. Case 1.1.1 in the proof of Proposition 8.2
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Figure 12. Case 1.1.2 in the proof of Proposition 8.2

Case 1.2: If u3 − u2 < τ̄ − t̄4, de�ne y (t) = r (t− t̄4 + u2). Then

y (t̄4 + u0 − u2) = y (t̄4) = y (t̄4 + u4 − u2) = ξ1,

y decreases on [t̄4 + u0 − u2, t̄4 + u1 − u2], increases on [t̄4 + u1 − u2, t̄4 + u3 − u2] and

decreases on [t̄4 + u3 − u2, t̄4 + u5 − u2]. With this choice of y, function p−y has exactly
one sign change on [max {τ̄ − 1, t̄4 + u0 − u2} , τ̄ ], since

y (t) < ξ1 < p (t) for t ∈ (max {τ̄ − 1, t̄4 + u0 − u2} , t̄4)
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and

p (t) < ξ1 < y (t) for t ∈ (t̄4, τ̄) .

The proof is clearly complete if τ̄ − 1 ≥ t̄4 + u0 − u2, hence we may suppose that

τ̄ − 1 < t̄4 + u0 − u2.

Case 1.2.1: If in addition, t̄4 + u4 − u2 ∈ [τ̄ , s̄1 + ω̄], then p− y has at most one sign

change on [τ̄ , t̄4 + u4 − u2], since y decreases and p increases on this interval. Therefore

p − y has at most two sign changes on [t̄4 + u0 − u2, t̄4 + u4 − u2], which interval has

length ρ > 1.

Case 1.2.2: If t̄4 + u4 − u2 > s̄1 + ω̄, then t̄4 + u4 − u2 ∈ [s̄1 + ω̄, t̄4 + ω̄ − δ0], as

u4−u2 < 1 < ω̄−δ0. According to Claim (iii), y (t) < p (t) for t ∈ [s̄1 + ω̄, t̄4 + u4 − u2].

As p increases and y increases on [τ̄ , s̄1 + ω̄] , function p−y has at most one sign change

on this interval. So p− y has at most two sign changes on [t̄4 + u0 − u2, t̄4 + u4 − u2].

Case 2: If u4− u2 < τ̄ − t̄4, then the proof is separated into three subcases according

to the length of [u1, u4].

Case 2.1: If τ̄ − t̄4 ≤ u4 − u1, set y (t) = r (t− τ̄ + u4). As in the previous cases, the

property that p and y are monotone on the intervals on which they are not bounded

away from each other implies that p− y has at most two sign changes on [τ̄ − 1, τ̄ ].

Case 2.2: If z̄ − t̄4 ≤ u4 − u1 < τ̄ − t̄4, choose y(t) = r (t− t̄4 + u1). Then p− y has

at most two sing changes on [t̄4, t̄4 + 1].

Case 2.3: If u4−u1 < z̄−t̄4, set y(t) = r (t− t̄4 + u1) again. Note that as u1−u0 < 1 <

ω̄−δ0, inequality t̄4−u1+u0 > t̄4−ω̄+δ0 holds. So either t̄4−ω̄+δ0 < t̄4−u1+u0 ≤ z̄−ω̄
or t̄4 − u1 + u0 > z̄ − ω̄.
Case 2.3.1: If t̄4 − u1 + u0 > z̄ − ω̄, then p − y admits at most two sign changes on

[t̄4 − u1 + u0, t̄4 − u1 + u4], which interval has length ρ > 1.

Case 2.3.2: If t̄4 − ω̄ + δ0 < t̄4 − u1 + u0 ≤ z̄ − ω̄, apply Claim (ii) to get that

y (t) > p (t) for all t ∈ [t̄4 − u1 + u0, z̄ − ω̄]. It follows that p− y has at most two sign

changes on [t̄4 − u1 + u0, t̄4 − u1 + u4].

The proof is complete. �

Proposition 8.3. Assume x : R → R is a solution of Eq. (1.1) with initial function

x0 ∈ Wu (p0) \ p0 such that x oscillates around ξ ∈ {ξ−1, 0, ξ1}. Then V
(
xt − ξ̂

)
= 2

for all t ∈ R, where ξ̂ ∈ C is the equilibrium ξ̂ (s) = ξ, s ∈ [−1, 0]. In addition,

V (xt+u − pt) = 2 for all u, t ∈ R and V (xt+u − xt) = 2 for all u ∈ R \ {0} and t ∈ R.
If there exists i ∈ {−1, 1} so that x oscillates around ξi, then V (xt+u − xit) = 2 for all

u, t ∈ R, where xi : R→ R is given by Proposition 2.7.
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Proof. Let x be a solution of Eq. (1.1) oscillating around ξ ∈ {ξ−1, 0, ξ1} with x0 ∈
Wu (p0) \ p0. Clearly, x0 6= ξ̂, hence xt 6= ξ̂ for t ∈ R by Proposition 8.1.

Since x0 ∈ Wu (p0), there exists (tn)∞0 ⊂ R so that tn → −∞ as n → ∞, xtn ∈
Wu (p0) for n ≥ 0 and xtn → p0 in C as n → ∞. Clearly, p0 ∈ A and xt ∈ A for all

t ∈ R. The norms ‖·‖ and ‖·‖1 are equivalent on A. Thus xtn → p0 also in C1-norm as

n→∞.

Let ω ∈ (1, 2) be the minimal period of p. Clearly, V
(
pt − ξ̂

)
= 2 for all t ∈ [0, ω),

hence Lemma 2.3 (iii) gives that pt − ξ̂ ∈ R for all t ∈ [0, ω), where function class R is

de�ned in Section 2. Lemma 2.2 implies that

2 = V
(
p0 − ξ̂

)
= lim

n→∞
V
(
xtn − ξ̂

)
.

Hence by Lemma 2.3 (i), V
(
xt − ξ̂

)
≤ 2 for all real t. If V

(
xt∗ − ξ̂

)
= 0 for some

t∗ ∈ R, that is xt∗ < ξ̂ or xt∗ > ξ̂, then Proposition 8.1 implies xt � ξ̂ or xt � ξ̂

for all t > t∗ + 1, respectively. This is a contradiction as x oscillates around ξ. So

V
(
xt − ξ̂

)
= 2 for all t ∈ R.

It is easy to deduce from the monotone property of p that V (pt+τ − pt+σ) = 2 in case

t ∈ R, τ, σ ∈ [0, ω) and σ 6= τ . In consequence pt+τ − pt+σ ∈ R all for t ∈ R and σ 6= τ .

Now choose any u ∈ R. Using the continuity of the �ow ΦA, we obtain that xtn+u →
pu in C1-norm as n→∞. By compactness, we may assume the existence of σ ∈ [0, ω)

such that ptn → pσ in C1-norm as n→∞. If σ 6= u, then Lemma 2.2 implies that

2 = V (pu − pσ) = lim
n→∞

V (xtn+u − ptn) ,

and Lemma 2.3 (i) gives that V (xt+u − pt) ≤ 2 for all real t. In case σ = u, observe

that xtn+u+ε → pu+ε 6= pσ for any small ε > 0, thus we may use our previous result and

Lemma 2.2 to get

V (xt+u − pt) ≤ lim inf
ε→0+

V (xt+u+ε − pt) ≤ 2

for all real t.

Now assume that V (xt∗+u − pt∗) = 0 for some t∗ ≥ 0, that is xt∗+u ≤ pt∗ or xt∗+u ≥
pt∗ . Suppose xt∗+u ≤ pt∗ for example. As x0 /∈ Op, Proposition 8.1 gives xt∗+u 6= pt∗

and thus xt∗+u+2 � pt∗+2. By [26], the set of those functions ϕ for which xϕt converges

to an equilibrium as t → ∞ is dense in C. Consequently there exists η ∈ C so that

xηt tends to one of the equilibrium points as t → ∞, and xt∗+u+2 � η � pt∗+2. As

xt+t∗+u+2 � xηt � pt+t∗+2 for all t ≥ 0 again by Proposition 8.1, this equilibrium point
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is necessarily ξ̂−2 contradicting to the fact that x oscillates around ξ. One comes to the

same conclusion assuming that xt∗+u ≥ pt∗ .

The argument con�rming the rest of the claim is similar, so we leave it to the reader.

To prove the last assertion, use Proposition 8.2. �

A second key tool besides the Lyapunov functional is the linear map π : C 3 ϕ 7→
(ϕ (0) , ϕ (−1)) ∈ R2 introduced in Section 2. From the paper [22] of Mallet-Paret and

Sell we know that π maps nontrivial periodic orbits of Eq. (1.1) into simple closed curves

in R2, and the images of di�erent periodic orbits are disjoint curves in R2. So

Op : R 3 t 7→ πpt ∈ R2, Oq : R 3 t 7→ πqt ∈ R2,

O1 : R 3 t 7→ πx1
t ∈ R2 and O−1 : R 3 t 7→ πx−1

t ∈ R2

are simple closed curves and disjoint. Here x1 and x−1 are the periodic solutions given

by Proposition 2.7. As p (R) ( q (R) ⊂ (ξ−2, ξ2), Oq ⊂ ext (Op) and πξ̂−2, πξ̂2 belong to

ext (Oq). Also, π0̂, O1, O−1 ∈ int (Op). For the images of the unstable equilibria, we have

πξ̂−1 ∈ int (O−1) and πξ̂1 ∈ int (O1). If x : R→ R is periodic solution oscillating slowly

around ξ−1 with x (R) ⊂ (ξ−2, 0), then either {πxt : t ∈ R} = O−1 or {πxt : t ∈ R} ⊂
int (O−1) by Proposition 2.7. Similarly, for a periodic solution x oscillating slowly

around ξ1 with range in (0, ξ2), either {πxt : t ∈ R} = O1 or {πxt : t ∈ R} ⊂ int (O1).

Note that as p (−1) = q (−1) = 0, p (0) < 0, q (0) < 0 and Oq ⊂ ext (Op), we have

q (0) < p (0) < 0.

Corollary 8.4. Let x : R→ R be a solution of Eq. (1.1) with initial data x0 ∈ Wu (p0)\
p0 such that x oscillates around ξ ∈ {ξ−1, 0, ξ1}. Then curve S : R 3 t 7→ πxt ∈ R2 is

simple and does not intersect Op.

Proof. Proposition 8.3 yields that t 7→ V (xt+u − xt) is �nite and constant for all u ∈
R\{0}. If there exist t ∈ R and u ∈ R\{0} such that πxt = πxt+u, then by Lemma 2.3

(ii), V (xt+u − xt) < V (xt+u−2 − xt−2), a contradiction. So S is simple. It follows from

Proposition 8.3 and Lemma 2.3 (ii) in a similar way that S and Op are disjoint. �

The Proof of Theorem 1.2. Set µ = 1, K = 7 and ε ∈ (0, ε∗), where ε∗ is given

by Proposition 6.6. Choose nonlinearity f ∈ C1
b (R,R) satisfying hypothesis (H1) so

that ‖f − f 7,ε‖C1
b
< min {δ1, δ2}. Then the conditions of Propositions 4.5, 6.7 and 7.2

are satis�ed by f , which means that the statement of Theorem 1.1 holds, and Eq. (1.1)

admits no rapidly oscillatory solutions.

Remark 8.5. We may assume that f satis�es hypothesis (H2) introduced in Section

2. As f is close to f 7,ε in C1
b -norm, it su�ces to verify this statement for f 7,ε with
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ε ∈ (0, ε∗). Recall that f 7,ε is de�ned by

f 7,ε (x) = 7ρ

(
|x| − 1

ε

)
sgn (x)

for all ε ∈ [0, 1), where ρ ∈ C∞, ρ (t) = 0 for t ≤ 0, ρ (t) = 1 for t ≥ 1 and ρ′(t) > 0 for

all t ∈ (0, 1). Set interval Iε = ρ−1 [1/7, (1 + ε)/7]. Clearly,

min
t∈Iε

ρ′ (t) ≥ min
t∈ρ−1[ 1

7
, 2
7 ]
ρ′ (t) = m > 0.

As (H1) holds and ξ1 ∈ (1, 1 + ε), there exists t0 ∈ Iε such that t0 = (ξ1 − 1) /ε and

ρ (t0) = ξ1/7. We obtain that(
f 7,ε
)′

(ξ1) =
7

ε
ρ′ (t0) ≥ 7m

ε
→∞ as ε→ 0 + .

Similarly, (f 7,ε)
′
(ξ−1) → ∞ as ε → 0+. So we may assume that ε∗ > 0 is chosen so

small that (H2) holds for f 7,ε with ε ∈ (0, ε∗).

Theorem 1.2 is a consequence of Claims 8.6�8.12 below.

Claim 8.6. A \ (A−2,0 ∪ A0,2) =Wu (Op) ∪Wu (Oq).

Proof. Clearly, A\(A−2,0 ∪ A0,2) ⊇ Wu (Op)∪Wu (Oq). Suppose x : R→ R is a solution

of (1.1) with x0 ∈ A \ (A−2,0 ∪ A0,2). Then α (x) contains no stable equilibrium point,

as in this case x0 would be the stable equilibrium itself. If ξ̂1 ∈ α (x), then Proposition

8.1 implies xt ∈ C0,2 for all t ∈ R, a contradiction to x0 /∈ A0,2. Similarly, ξ̂−1 /∈ α (x).

As x is necessarily bounded, the Poincaré�Bendixson theorem implies α (x) is a periodic

orbit. Theorem 7.2 gives that there are no periodic orbits in A\ (A−2,0 ∪ A0,2) besides

Op and Oq. So x0 ∈ Wu (Op) ∪Wu (Oq). �

Claim 8.7. There exist connecting orbits from Op and Oq to the equilibrium points ξ̂−2

and ξ̂2. Moreover, for each ϕ ∈ Wu
1 (Op) \ Op and for each ϕ ∈ Wu (Oq) \ Oq, ω (ϕ) is

either
{
ξ̂−2

}
or
{
ξ̂2

}
.

Proof. First consider the 1-dimensional leading unstable manifold Wu
1 (p0). By Appen-

dix VII in [17], the eigenfunction v1 corresponding to the greatest positive eigenvalue λ1

of DP (p0) is strictly positive. Choose δ1 so small that ‖Dw̃ (δv1)‖ < 1/2 for |δ| < δ1,

where w̃ is the map introduced on page 64. Observe that

w̃ (δv1) + δv1 =

ˆ 1

0

Dw̃ (sδv1) δv1ds+ δv1 � 0
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if δ ∈ (0, δ1), and w̃ (δv1) + δv1 � 0 if δ ∈ (−δ1, 0). Setting

η1 = p0 +
δ1

2
v1 + w̃

(
δ1

2
v1

)
and η2 = p0 −

δ1

2
v1 + w̃

(
−δ1

2
v1

)
,

we get η1, η2 ∈ Wu
1 (p0) and η2 � p0 � η1. By [26], there exist η+

1 , η
−
1 , η

+
2 , η

−
2 ∈ C such

that

η−2 � η2 � η+
2 � p0 � η−1 � η1 � η+

1 ,

and for i = 1, 2, x
η−i
t and x

η+
i
t converge to one of the equilibrium points as t→∞. Since

maxt∈R p (t) > ξ1, mint∈R p (t) < ξ−1 and

x
η−2
t � x

η+
2
t � pt � x

η−1
t � x

η+
1
t for all t ≥ 0

by Proposition 8.1, we obtain that

x
η−2
t → ξ̂−2, x

η+
2
t → ξ̂−2, x

η−1
t → ξ̂2 and xη

+
1
t → ξ̂2 as t→∞.

Using again Proposition 8.1, we get xη2
t → ξ̂−2 and xη1

t → ξ̂2 as t→∞.

For each ϕ ∈ Wu
1 (Op) \Op, there is a solution x : R→ R of Eq. (1.1) and a sequence

(tn)∞0 such that x0 = ϕ, xtn ∈ Wu
1 (p0)\p0 for all n ≥ 0 and xtn → p0 as n→∞. Hence

there exist δ ∈ (−δ1, 0)∪ (0, δ1) and n∗ ≥ 0 so that xtn∗ = p0 + w̃ (δv1)+ δv1. The above

reasoning shows that if δ < 0, then ω (ϕ) =
{
ξ̂−2

}
, and if δ > 0, then ω (ϕ) =

{
ξ̂2

}
.

Since Wu (q0) is a 1-dimensional unstable manifold as well, and Wu (Oq) is the for-

ward extension of Wu (q0), it is analogous to show that for each ϕ ∈ Wu (Oq) \ Oq,
ω (ϕ) is either

{
ξ̂−2

}
or
{
ξ̂2

}
, moreover these connections indeed exist. �

It remains to describe Wu (Op) \Wu
1 (Op).

Claim 8.8. Suppose that for ϕ ∈ Wu (Op) \ Op, the limit set ω (ϕ) is a non-constant

periodic orbit. Then if the solution xϕ : R → R oscillates around 0, then ω (ϕ) = Oq.
Otherwise ω (ϕ) is either O−1 or O1.

Proof. Suppose ϕ ∈ Wu (Op)\Op, and ω (ϕ) is a non-constant periodic orbit {rt : t ∈ R}.
First let us examine the case when xϕ : R→ R oscillates around 0. Then asWu (Op)

is the forward extension ofWu (p0), Proposition 8.3 implies V (xϕt ) = 2 for all t ∈ R. For
any t ∈ R �xed, there exists (tn)∞0 with tn →∞ as n→∞ so that rt is the limit of xϕtn in

C. As we have seen before, this implies convergence also in C1-norm. As the segments

of any periodic solution belong to R, Lemma 2.2 gives V (rt) = limn→∞ V
(
xϕtn
)

= 2. In

addition, Proposition 2.5 yields r (R) ⊃ (ξ−1, ξ1). Therefore r equals p or q apart from

shift by Theorem 1.1. We claim that ω (ϕ) 6= Op. Indeed, Corollary 8.4 implies R 3 t 7→
πxϕt ∈ R2 is a simple curve winding around (0, 0). This fact and dist (πxϕt , πOp) → 0
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as t → ±∞ give a contradiction by the Jordan curve theorem. So we obtain that if

xϕ : R→ R oscillates around 0, then ω (ϕ) = Oq.
Now assume xϕ is not oscillatory around 0. Then there exists t∗ ∈ R such that

xϕt∗ > 0 or xϕt∗ < 0. Suppose xϕt∗ > 0 for example. Then xϕt � 0 for all t > t∗ + 1.

Necessarily r (t) > 0 for all t ∈ R. Proposition 2.5 gives that

0 < min
t∈R

r (t) < ξ1 < max
t∈R

r (t) < ξ2.

As ω (ϕ) = {rt : t ∈ R}, it follows that xϕ is also oscillatory around ξ1. Therefore

V
(
xϕt − ξ̂1

)
= 2 for all t ∈ R by Proposition 8.3. For each t ∈ R, there corresponds a

sequence (tn)∞0 ⊂ R with tn →∞ as n→∞ such that xϕtn → rt in C (and thus in C1) as

n→∞. Hence V
(
rt − ξ̂1

)
= 2 for all t ∈ R by Lemma 2.2. We obtain that r is slowly

oscillatory around ξ1 and has range in (0, ξ2). Recall from Proposition 2.7 that the

periodic solution x1 : R → R is set so that it oscillates slowly around ξ1 with x1(R) ⊂
(0, ξ2), and the range x1(R) is maximal in the sense that x1(R) ⊃ x(R) for all periodic

solutions x oscillating slowly around ξ1 with ranges in (0, ξ2). Therefore {πrt : t ∈ R}
either equals O1 or belongs to int (O1). Proposition 8.3 implies V (xϕt+u − x1

t ) = 2 for

all u, t ∈ R. With Lemma 2.3 (ii), this yields that the curve S : R 3 t 7→ πxϕt ∈ R2 does

not intersect O1. So necessarily r equals x1 apart from shift and ω (ϕ) = O1. In case

there is t∗ ∈ R such that xϕt∗ < 0, we deduce in a similar way that ω (ϕ) = O−1. �

Claim 8.9. Assume that for ϕ ∈ Wu (Op)\Op, the limit set ω (ϕ) is not a non-constant

periodic orbit. Then it is a stable equilibrium.

Proof. As for all ϕ ∈ Wu (Op) \ Op, the orbit {xϕt : t ≥ 0} is bounded, the Poincaré�

Bendixson theorem can be applied (see Section 2). Hence if ω (ϕ) is not a non-constant

periodic orbit, then for each ψ ∈ ω (ϕ), we have

α (ψ) ∪ ω (ψ) ⊂
{
ξ̂i : i = −2,−1, 0, 1, 2

}
.

If ξ̂0 is in ω (ϕ), then ω (ϕ) =
{
ξ̂0

}
as the equilibrium is stable. Similarly for ξ̂−2 and

ξ̂2.

Suppose for contradiction that ω (ϕ) contains no stable equilibrium point. If ϕ is

in the stable set of ξ̂i with i ∈ {−1, 1}, then as (H2) holds, V
(
xϕt − ξ̂i

)
> 2 for all

t ∈ R (see Section 2), a contradiction to Proposition 8.3. So there exists ψ ∈ ω (ϕ)

such that ψ is not an equilibrium. Then α (ψ) ∪ ω (ψ) ⊆
{
ξ̂−1, ξ̂1

}
. As it is mentioned

in Section 2, there exists no homoclinic orbit to ξ̂1 and to ξ̂−1. Hence α (ψ) 6= ω (ψ).

If α (ψ) =
{
ξ̂−1

}
, then there is t∗ ∈ R with xψt∗ � ξ̂0. By Proposition 8.1, xψt � ξ̂0
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for each t > t∗, a contradiction to ω (ψ) =
{
ξ̂1

}
. One comes to the same conclusion

assuming that α (ψ) =
{
ξ̂1

}
and ω (ψ) =

{
ξ̂−1

}
. �

It remains to show that the above connections indeed exist.

Recall that the unstable space

Hu = {c1v1 + c2v2 : c1, c2 ∈ R}

of DP (p0) is 2-dimensional, where v1 is a positive eigenfunction corresponding to the

leading eigenvalue λ1 and v2 is the eigenfunction corresponding to the second eigenvalue

λ2 greater than one. Then for the solution x
v2
t : R→ R of the linear variational equation

(8.2) ẋ (t) = −x (t) + f ′ (p (t− 1))x (t− 1)

with initial segment v2, we have V (xv2
t ) = 2 for all real t [17]. Clearly v2 (−1) = 0

and so v2 (0) 6= 0 by Lemma 2.3. Either v2 (0) > 0 or v2 (0) < 0 is possible. Assume

eigenfunction v2 is chosen so that v2 (0) > 0. Also, we may set ‖v1‖ = ‖v2‖ = 1.

For n ≥ 0, let

Sn =

{
ϕ ∈ C : ‖ϕ− p0‖ =

1

n

}
denote the sphere in C centered at p0 with radius 1/n. As Wu (p0) and Wu

1 (p0) are

2-dimensional and 1-dimensional local manifolds tangent to {p0} + Hu and {p0} + H1
u

at p0, respectively, there is n0 ≥ 0 such that for n ≥ n0, Sn ∩Wu (p0) is homeomorphic

to S1, and in addition Sn and Wu
1 (p0) intersect in ηn1 ∈ H and in ηn2 ∈ H. Based on

the proof of Claim 8.7, we may suppose that ηn1 � p0 � ηn2 for each n ≥ n0, therefore

x
ηn1
t → ξ̂−2 and xη

n
2
t → ξ̂2 as t→∞ for each n ≥ n0.

For n ≥ n0, let Cn : [−1, 1]→ Sn ∩Wu (p0) be a simple closed curve with Cn (−1) =

Cn (1) = ηn1 and Cn (0) = ηn2 oriented so that PrHu (Cn (−1, 0)− p0) intersects {cv2 : c < 0} ⊂
H2
u and PrHu (Cn (0, 1)− p0) intersects {cv2 : c > 0} ⊂ H2

u, see Fig. 13. This choice is

possible. Obviously, Cn (s) 6= p0 for all n ≥ n0 and s ∈ [−1, 1].

In order to prove the existence of the heteroclinic connections, we are going to apply

the next assertion.

Claim 8.10. To each ξ ∈ {ξ−1, ξ0, ξ1}, there correspond initial functions ϕ ∈ Wu (p0)

and ψ ∈ Wu (p0) with

q (0) < ϕ (0) < p (0) < ψ (0) < 0

such that solutions xϕ : R→ R and xψ : R→ R oscillate around ξ.
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Figure 13. The unstable manifold and the image of Cn

Proof. Assume that ξ ∈ {ξ−1, ξ0, ξ1} and de�ne

A+ =
{
η ∈ Wu (p0) : xηt � ξ̂ for some t ≥ 0

}
and

A− =
{
η ∈ Wu (p0) : xηt � ξ̂ for some t ≥ 0

}
.

Clearly ηn1 ∈ A− and ηn2 ∈ A+ for all n ≥ n0 because xη
n
1
t → ξ̂−2 and x

ηn2
t → ξ̂2 as

t→∞. Then sets A+∩Cn [−1, 0] and A−∩Cn [−1, 0] are disjoint, open and nonempty

in Cn [−1, 0] for all n ≥ n0. It follows from connectedness that there exists sn ∈ (−1, 0)

with Cn (sn) /∈ (A+ ∪ A−), that is xCn(sn) : R→ R oscillates around ξ.

For n ≥ n0, the function yn : R→ R with

yn (t) :=
xCn(sn) (t)− p (t)

‖Cn (sn)− p0‖
, t ∈ R,

satis�es the equation ẏn (t) = −yn (t) + an (t) yn (t− 1), where

an : R 3 t 7→
ˆ 1

0

f ′
(
θxCn(sn) (t− 1) + (1− θ) p (t− 1)

)
dθ ∈ R.

Because of the choice of curves Cn, an (t) → f ′ (p (t− 1)) as n → ∞ uniformly on

compact subsets of [0,∞).

Since Cn (sn) ∈ Wu (p0) \ {p0} for all n ≥ n0, Cn (sn)→ p0 as n→∞ and Wu (p0) is

tangent to {p0}+Hu at p0, we may suppose yn0 → z0 ∈ C as n→ −∞, where z0 ∈ Hu.

Since ‖yn0 ‖ = 1 for all n ≥ n0, ‖z0‖ = 1. Let z : [−1,∞) → R be the solution of (8.2)

with initial data z0. Then yn → z uniformly on compact subsets of [−1,∞).
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We claim that z0 = −v2. Assume that z0 = c1v1 +c2v2 with c1 6= 0. As v1 is a positive

eigenfunction corresponding to the leading eigenvalue λ1 > 1, there exists t∗ = t∗ (c1)

such that zt∗ � 0 (or zt∗ � 0) and thus ynt∗ � 0 (or ynt∗ � 0) for some n ≥ n0. This is

impossible by Proposition 8.3. So z0 = c2v2 with c2 ∈ R. The de�nition of Cn and the

fact that sn ∈ (−1, 0) implies c2 ≤ 0. Also, |c2| = 1 as ‖z0‖ = ‖v2‖ = 1. So c2 = −1.

As v2 (0) > 0 , we conclude that z0 (0) < 0. Since yn0 → z0 and Cn (sn) → p0

as n → ∞, there exist n1 ∈ N so that for n ≥ n1, q0 (0) < Cn (sn) (0) < p0 (0).

Accordingly set ϕ = Cn1 (sn1) .

Similarly, there exists tn ∈ (0, 1) so that solution xCn(tn) : R → R oscillates around

ξ. The same reasoning carried out for (Cn (tn))∞n0
instead of (Cn (sn))∞n0

implies that

p0 (0) < Cn (tn) (0) < 0 for all n ≥ n2 with some n2 ∈ N. So choose ψ = Cn2 (tn2).

Clearly ϕ and ψ are in possession of the required properties. �

Claim 8.11. There exist heteroclinic connections from Op to 0̂ and to Oq.

Proof. Claim 8.10 gives that there exists η3, η4 ∈ Wu (p0) with

q (0) < η3 (0) < p (0) < η4 (0) < 0

such that solutions xη3 : R → R and xη4 : R → R oscillate around 0. Claim 8.9 gives

that ω (ηi), i ∈ {3, 4}, is either a periodic orbit or a stable equilibrium. If ω (η3) ={
ξ̂2

}
, then by the monotone property of the semi�ow Φ (see Proposition 8.1) there is

t0 > 0 such that xη3
t � 0 for t > t0, a contradiction. Similarly, ω (η3) 6=

{
ξ̂−2

}
and

ω (η4) *
{
ξ̂−2, ξ̂2

}
. We prove that ω (η3) = Oq and ω (η4) =

{
0̂
}
.

Consider the curves

S3 : R 3 t 7→ πxη3
t ∈ R2 and S4 : R 3 t 7→ πxη4

t ∈ R2.

By Corollary 8.4, S3 and S4 are simple, furthermore they have no points in common

with Op.

Function η3 is selected so that S3 (0) = (η3 (0) , η3 (−1)) ∈ ext (Op). Thus S3 (t) ∈
ext (Op) for all t ∈ R. As a consequence, 0̂ is not in ω (η3). Note that all the other

stable equilibria have already been excluded, hence it follows from Claim 8.9 that

ω (η3) = {rt : t ∈ R}, where r is a nontrivial periodic solution of Eq. (1.1). As xη3

oscillates around 0, ω (η3) = Oq by Claim 8.8.

Similarly, Claim 8.8 yields that if ω (η4) is a non-constant periodic orbit, then ω (η4) =

Oq. However, the choice of η4 implies S4 (0) = (η3 (0) , η3 (−1))tr ∈ int (Op), hence

S4 (t) ∈ int (Op) for all t ∈ R. It follows immediately that ω (η4) 6= Oq. So ω (η4) is a
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stable equilibrium by Claim 8.9. As ξ̂−2 and ξ̂2 have been excluded at the beginning of

the proof, necessarily ω (η4) =
{

0̂
}
. �

Claim 8.12. There are heteroclinic connections from Op to the orbits O1 and O−1.

Proof. According to Claim 8.10, there exists η5 ∈ Wu (p0) with 0 > η5 (0) > p (0) such

that solution xη5 : R→ R oscillates around ξ1. Curve S5 : R 3 t 7→ πxη5
t ∈ R2 does not

intersect Op. Hence S (t) ∈ int (Op) for all t ∈ R and ω (η5) 6= Oq. Also, ω (η5) is not a

stable equilibrium or O−1 as xη5 oscillates around ξ1. So ω (η5) = O1, see Claim 8.8.

At last, set η6 ∈ Wu (p0) with 0 > η6 (0) > p (0) so that xη6 : R → R oscillates

around ξ−1. This is possible by Claim 8.10. An analogous argument veri�es that

ω (η6) = O−1. �
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