It is enough to show that on this subsequence the second and third terms in
decomposition (5) tends to 0. For the second term

‘/(XT - XT/\’I’Lk)dP’ - ’/ (XT - X’T/\nk)dP‘
A An{T>n}

<[ x]+1X )P
An{r>ng}

g/ ]XT\dPJr/ X, | P,
{r>nk} {r>nk}

Similarly, for the third term

/ (X, — XmgdP‘ _ ’ / (X, Xnk>dP‘
A Aﬁ{o’>nk}

<[ aps [ pejap
{o>ni} {r>ni}

Using (2) both upper bounds tend to 0. O

Corollary 2. Assume that (X,,) is (super-, sub-) martingale, T is a stopping
time, E(|X,|) < oo and (3) holds. Then

(i) E(X;|F) < X and E(X;) < E(X;) for supermartingales;

(ii) E(X,|F1) > X1 and E(X,) > E(X;) for submartingales;

(111) E(X,|F) = X, and E(X;) = E(X;) for martingales.

Some conditions are needed for the optional stopping to hold.

Example 2 (Simple symmetric random walk). Let £, &, &, . . . are iid random
variables with P(§ = £1) = 1/2. Let Sy =1 and S,, = S,,—1 +&,. Then (S,)
is martingale. Let 7 = min{n : S,, = 0}. Then 7 is a stopping time and the
martingale (S;n)n tends to 0 a.s. The optional stopping does not hold as
S; =0 a.s., while Sy = 1. Clearly, condition (3) does not hold.

Theorem 5 (Wald identity). Let X, X1, Xo, ... be iid random variables with
EX = p € R, and let 7 be a stopping time with E(1) < oco. Put S, =
X1 4+ X,, neN. Then E(S;) = uE(7).

E_(S‘h) < Eé\:)(ﬂT

:ZE)(Z =N

¢!
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To see the general case consider the decomposition S, = S — 58 where

SO =3"X{1(r > k) at- W““(OJ a)
k=1
and 00 T o —0\7
SO =" X, 1(r > k). A7 el ‘
= a=at q-

As a simple application of the optional stopping problem we consider the
gambler’s ruin problem. There is an elementary but longer way to derive
these formulas.

Example 3 (Gambler’s ruin). Let X, Xy, Xy, ... be iid random variables such
n € N. Fix a,b € N and let . -t
I/‘M»\ -

T =1.(p) =inf{n: S, >bor S, <—a},

with the convention inf () = co. Let (F,,) be the natural filtration, i.e. F, =
o(X1,...,Xn), n €N. HW

It is easy to show that P(7 < co) = 1, and 7 is a stopping time. Further-
more, |S;| < max(a,b), in particular E|S;| < oo and

lim inf/ |Sy| dP < lim inf max(a, b))P (7 > n) = 0.
{r>n}

n—oo n—oo
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First assume that p = 1/2. Then EX = 0 and (S,,) is a martingale.
Therefore, by the optional stopping theorem

0=ES, = ES, = —aP(S, = —a) + bP(S, = b)
= —a(1 —P(S; = b)) + bP(S, = b).

Thus

a b
P(ST:b):a+b and P(ST:—a)ch_b.

Using that (S? — n) is a martingale, we can determine E7. Since

—
 opprg  0=E(S; —0) =E(S2—7) .
we ob‘:aﬁ: Y?(f :Ch@( ’(! Fn {k)
ET = Efsi)z a’P(S, = —a) + b*P(S, = b) = a* b + 02— = ab.

The case p # 1/2 is different. Introduce

s = [[ s =z, [E =5
V()ltz ‘\Iﬁ'r?lé{ t;-\ oe\l ha.l’\md./( /\‘Zd"q_-h.\,\H CB\/ ;f;..q]

with s = (1 —p)/p = 1/r. Then (Z,) is a martingale and S, o« )(
Z. = 8T(S, =b) + 5 I(S, = —a) < 5"+ 57,

thus EZ,; < oo and /t/7
/{ liminf/ | Z,| dP < (s° 4 s7) liminf P{7 > n} = 0. - Z Py ,SK

{/
Again, by the optional sampling theorem

Hz) w(z) oo @R

= E(s"") = E(Z,)
=E(Z) =E(s") = 1.

Rearranging we obtain

1_b b b_l 1_b
P(S, = —a)= ——— = — -

g—a _ gb yb rotb _ 1 - 1 — patd’




E1) Ut 1) — @fitet)

—_ —_ /_ )
To obtain E7, using the Wald identity E(%) ~ P (\ f " (Z(Pv (
—

ES. = (2p — 1)ET,
from which

Er

1 1
—= E el —P = — P — .
35155 = 5y [P (S; = —a) + bP(S, = 1)

Exercise 44 Show that 7 < o0 a.s.y

2 Continuous time martingales (—_ >
2.1 Definitions and simple properties o T

Let (Q,F,P) be a probability spance and (F;);>o a filtration, i.e. an in-
creasing sequence of g-algebras. The time horizon is either finite or infinite,

Le[0,T] or t € [0, 00). I of
In what follows we always assume that the filtration satisfies the usual + S
propreties:

ek
(i) Fo contains the P-null sets; 01'*? ~° e " t\ > 5

(i) (F); is right-continuous, i.e. NgsyFs ::Ef[t+ = ]-}i
Let (X;) and (Y;) be stochastic processes. The process Y is a modification
of X if X; =Y, as. for any fix ¢, i.e. P(X; =Y;) = 1 for each ¢ > 0. The {\Jmé&{&-o\q
processes X and Y are indistuinguishable if their sample path are the same

almost surely, i.e. { & .
P(X, =Y, t>0) =1 ““g'-m

They have the same finite dimensional distributions if for all 0 < t; <ty < & 6~
... <t, <ooand A€ B(R")

P((Xy,....X:) €A =P ((Ys,....Y,) € A).

Example 4. Let U be uniform(0,1), and X; =0, ¢t € [0,1], and YV; = I(U =
t). Then Y is a modification of X, but they are not indistuinguishable, since

P(X, =Y, t>0)=0. — X

The process (X;), is adapted to the filtration (F;)q, if X, is F;-measureable
for each t > 0. The process (X;, F;): is a martingale if

10 — ¥



(i) (X3); is adapted to (Fy)s;
(ii) E|X:| < oo for all t > 0;
(iii) E[X|F;] = X; a.s. for all t > s.
It is sub- or supermartingale if (i) and (ii) holds, and (iii) holds with > or <
instead of =.
A random variable 7 : Q — [0,00) is a stopping time if {7 < t} € F;.
The o-algebra of the events prior to 7, or pre-7-o-algebra is

Fr={AceF:An{r <t} e Fforalt>0}
Exercise 5. Show that F, is indeed a o-algebra.
The next result is obvious, but very useful.

Proposition 2. Let (X;, F;) be a (sub-, super-) martingale. Then for any
sequence 0 < tg < t; < ... <ty < oo the process (Xy,,Fi,)N_ is a discrete
time martingale.

Lemma 3. Let 0,7 be stopping times. f,
(i) T is Fr-measureable.
(i) If T =1t then F, = F;.
(1ii) o AT =min(o,7) and o VT = max(o,T) are stopping times. l\})
() If o < 7, then F, C F;.
(v) If (X¢): is right-continuous and adapted then X, is F,-measurable.
Exercise 6. Prove the lemma.

Remark 1. In continuous time the technical detailes are trickier.
The process (X;); is adapted to (F;);, if X; is Fi-measurable, and it is
progressively measureable with respect to ()¢, if for all ¢ > 0 and A € B(R?)

[o){}xﬂ {(s,0): 5 <1, X,(w) € A} € B(0,1]) @ F,

where B stands for the Borel sets, and ® is the product o-algebra. In what
follows we always need progressive measureability, adaptedness is not enough.
The next statement says that the situation is not too bad.

Proposition 3. If (X;) is right continuous and adatped, then it is progressively
measureable.

11
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Example 5 (Poisson process). A Poisson process with intensity A > 0 is
an adapted integer valued RCLL (right continuous with left limits) process
N = (Ny, Fi)i>o0 such that

(i) N has independent increments, that is N; — N is independent of F;

—

for any s < t,

(i) No =0 a.s.,

(iii) Ny — Ns ~ Poisson(A(t — s)). /
Exercise 7. Show that (N, — At) is martingale.
Proposition 4. Let (X;) be a martingale, and ¢ a convex function such that
E|p(X;)| < 0o for allt > 0. Then (p(X,)) is submartingale.

Furthermore if (X;) is a submartingale and ¢ nondecreasing and convex
that E|p(X;)| < oo for allt > 0, then (¢(Xy)) is a submartingale.

Example 6 (Wiener process). The Wiener process or standard Brownian
motion is an adapted process W = (W;, Fi)i>0 such that
(i) W has independent increments, that is W; — W is independent of Fj

for any s < t,
(i) W =0 as.,
(ili) W, — W, ~ N(0,t — s), &= gﬁu&m
(iv) Wy has continuous sample path. , >
I\i{xercise 8. Show that (W) and (W? — t) are martingales.

2.2 DMartingale convergence theorem

Consider an adapted stochastic process (X;);>o. Fix a < b, and a finite set
F C [0,00). Let Up denote the number of upcrossings of the interval [a, b]
by the restricted process (X;)icp. Formally, let 7 = 0, and

Tok—1 = min{t EF: t2>mp 0 X, < CL},
Top = mll’l{t EF: t>m 1,X > b}

The number of upcrossings on F' is

Ur(a,b) = Up = max{k : m9, < co}. (ﬂ
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We can extend the definition of infinite sets I C [0, 00) as
Uy =sup{Up: F C I, F finite}.
We have the upcrossing inequality.

Theorem 6 (Upcrossing inequality). Let (X;) be a right-continuous sub-
martingale. For any a < b and 0 < S <T < 0 ——

(b—a)EUsq <E(Xr —a)" —E(Xs—a)".
Proof. Consider an enumeration of the countable set @ N [S, 7] as

QNS T ={q,q,.. .}, “/0

and let F,, = {q1,...,qn} U {g,ﬁ Then (X, E)te&' is a discrete time mar-
tingale, therefore, by the upcrossing inequality

(b—a)EUg, <E(Xr—a)t —E(Xg—a)" 4
Since F), is increasing, U, is increasing, and by the right-continuity of (X})

lim UFn = U[S,T] a.s.

n—oo
In particular, Uis 7] is measurable, and by the monotone convergence theorem
the result follows. O

Theorem 7 (Martingale convergence theorem). Let (X;) be a right-continuous
submartingale such that

supE(X;") < .
>0

Then lim;_ o, X; = X exists a.s. and E|X| < co.

Proof. By the upcrossing inequality and the monotone convergence theorem

for any a < b
~— su EX," +|a
EU[O,oo)(a,b) < Ptzob _; | |

Therefore, for any a < b the upcrossings Ujg)(a,b) are a.s. finite. Thus
almost surely the uppcrossings are finite for all a < b rationals, implying the
existence of the limit.

The integrability of the limit follows from Fatou’s lemma. m

AyeS U doh) =17 Whey )= 0
a,cy&Aa;b;A (\7{7[]):@.
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