
It is enough to show that on this subsequence the second and third terms in
decomposition (5) tends to 0. For the second term

����
�

A

(Xτ −Xτ∧nk
)dP

���� =
����
�

A∩{τ>nk}
(Xτ −Xτ∧nk

)dP

����

≤
�

A∩{τ>nk}
(|Xτ |+ |Xnk

|)dP

≤
�

{τ>nk}
|Xτ | dP+

�

{τ>nk}
|Xnk

| dP.

Similarly, for the third term
����
�

A

(Xσ −Xσ∧nk
)dP

���� =
����
�

A∩{σ>nk}
(Xσ −Xnk

)dP

����

≤
�

{σ>nk}
|Xσ| dP+

�

{τ>nk}
|Xnk

| dP.

Using (2) both upper bounds tend to 0.

Corollary 2. Assume that (Xn) is (super-, sub-) martingale, τ is a stopping
time, E(|Xτ |) < ∞ and (3) holds. Then

(i) E(Xτ |F1) ≤ X1 and E(Xτ ) ≤ E(X1) for supermartingales;
(ii) E(Xτ |F1) ≥ X1 and E(Xτ ) ≥ E(X1) for submartingales;
(iii) E(Xτ |F1) = X1 and E(Xτ ) = E(X1) for martingales.

Some conditions are needed for the optional stopping to hold.

Example 2 (Simple symmetric random walk). Let ξ, ξ1, ξ2, . . . are iid random
variables with P(ξ = ±1) = 1/2. Let S0 = 1 and Sn = Sn−1 + ξn. Then (Sn)
is martingale. Let τ = min{n : Sn = 0}. Then τ is a stopping time and the
martingale (Sτ∧n)n tends to 0 a.s. The optional stopping does not hold as
Sτ ≡ 0 a.s., while S0 = 1. Clearly, condition (3) does not hold.

Theorem 5 (Wald identity). Let X,X1, X2, . . . be iid random variables with
EX = µ ∈ R, and let τ be a stopping time with E(τ) < ∞. Put Sn =
X1 + · · ·+Xn, n ∈ N. Then E(Sτ ) = µE(τ).
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Proof. First assume X ≥ 0. We have

E(Sτ ) = E

� ∞�

k=1

I(τ ≥ k)Xk

�

=
∞�

k=1

E(I(τ ≥ k)Xk)

=
∞�

k=1

EI(τ ≥ k)E(Xk)

= µ
∞�

k=1

P(τ ≥ k)

= µE(τ).

To see the general case consider the decomposition Sτ = S
(+)
τ −S

(−)
τ where

S(+)
τ =

∞�

k=1

X+
k I(τ ≥ k)

and

S(−)
τ =

∞�

k=1

X−
k I(τ ≥ k).

As a simple application of the optional stopping problem we consider the
gambler’s ruin problem. There is an elementary but longer way to derive
these formulas.

Example 3 (Gambler’s ruin). Let X,X1, X2, . . . be iid random variables such
that P(X = 1) = p = 1−P(X = −1), 0 < p < 1, and put Sn = X1+· · ·+Xn,
n ∈ N. Fix a, b ∈ N and let

τ = τa,b(p) = inf{n : Sn ≥ b or Sn ≤ −a},
with the convention inf ∅ = ∞. Let (Fn) be the natural filtration, i.e. Fn =
σ(X1, . . . , Xn), n ∈ N.

It is easy to show that P(τ < ∞) = 1, and τ is a stopping time. Further-
more, |Sτ | ≤ max(a, b), in particular E|Sτ | < ∞ and

lim inf
n→∞

�

{τ>n}
|Sn| dP ≤ lim inf

n→∞
max(a, b)P(τ > n) = 0.
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First assume that p = 1/2. Then EX = 0 and (Sn) is a martingale.
Therefore, by the optional stopping theorem

0 = ES0 = ESτ = −aP(Sτ = −a) + bP(Sτ = b)

= −a(1−P(Sτ = b)) + bP(Sτ = b).

Thus
P(Sτ = b) =

a

a+ b
and P(Sτ = −a) =

b

a+ b
.

Using that (S2
n − n) is a martingale, we can determine Eτ . Since

0 = E(S2
0 − 0) = E(S2

τ − τ)

we obtain

Eτ = ES2
τ = a2P(Sτ = −a) + b2P(Sτ = b) = a2

b

a+ b
+ b2

a

a+ b
= ab.

The case p �= 1/2 is different. Introduce

Zn = sSn =
n�

k=1

sXk

with s = (1− p)/p = 1/r. Then (Zn) is a martingale and

Zτ = sbI(Sn = b) + s−aI(Sn = −a) ≤ sb + s−a,

thus EZτ < ∞ and

lim inf
n→∞

�

{τ>n}
|Zn| dP ≤ (sb + s−a) lim inf

n→∞
P{τ > n} = 0.

Again, by the optional sampling theorem

s−aP(Sτ = −a) + sb (1−P(Sτ = −a))

= s−aP(Sτ = −a) + sbP(Sτ = b)

= E(sSτ ) = E(Zτ )

= E(Z1) = E(sX) = 1.

Rearranging we obtain

P(Sτ = −a) =
1− sb

s−a − sb
rb

rb
=

rb − 1

ra+b − 1
=

1− rb

1− ra+b
.
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To obtain Eτ , using the Wald identity

ESτ = (2p− 1)Eτ,

from which

Eτ =
1

2p− 1
ESτ =

1

2p− 1
[−aP(Sτ = −a) + bP(Sτ = b)] .

Exercise 4. Show that τ < ∞ a.s.

2 Continuous time martingales

2.1 Definitions and simple properties

Let (Ω,F ,P) be a probability spance and (Ft)t≥0 a filtration, i.e. an in-
creasing sequence of σ-algebras. The time horizon is either finite or infinite,
t ∈ [0, T ] or t ∈ [0,∞).

In what follows we always assume that the filtration satisfies the usual
propreties:

(i) F0 contains the P-null sets;
(ii) (Ft)t is right-continuous, i.e. ∩s>tFs =: Ft+ = Ft.

Let (Xt) and (Yt) be stochastic processes. The process Y is a modification
of X if Xt = Yt a.s. for any fix t, i.e. P(Xt = Yt) = 1 for each t ≥ 0. The
processes X and Y are indistuinguishable if their sample path are the same
almost surely, i.e.

P(Xt = Yt, t ≥ 0) = 1.

They have the same finite dimensional distributions if for all 0 ≤ t1 < t2 <
. . . < tn < ∞ and A ∈ B(Rn)

P ((Xt1 , . . . , Xtn) ∈ A) = P ((Yt1 , . . . , Ytn) ∈ A) .

Example 4. Let U be uniform(0, 1), and Xt ≡ 0, t ∈ [0, 1], and Yt = I(U =
t). Then Y is a modification of X, but they are not indistuinguishable, since

P(Xt = Yt, t ≥ 0) = 0.

The process (Xt)t is adapted to the filtration (Ft)t, if Xt is Ft-measureable
for each t ≥ 0. The process (Xt,Ft)t is a martingale if
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(i) (Xt)t is adapted to (Ft)t;
(ii) E|Xt| < ∞ for all t ≥ 0;
(iii) E[Xt|Fs] = Xs a.s. for all t ≥ s.

It is sub- or supermartingale if (i) and (ii) holds, and (iii) holds with ≥ or ≤
instead of =.

A random variable τ : Ω → [0,∞) is a stopping time if {τ ≤ t} ∈ Ft.
The σ-algebra of the events prior to τ , or pre-τ -σ-algebra is

Fτ = {A ∈ F : A ∩ {τ ≤ t} ∈ Ft for all t ≥ 0}.

Exercise 5. Show that Fτ is indeed a σ-algebra.

The next result is obvious, but very useful.

Proposition 2. Let (Xt,Ft) be a (sub-, super-) martingale. Then for any
sequence 0 ≤ t0 < t1 < . . . < tN < ∞ the process (Xtn ,Ftn)

N
n=0 is a discrete

time martingale.

Lemma 3. Let σ, τ be stopping times.
(i) τ is Fτ -measureable.
(ii) If τ ≡ t then Fτ = Ft.
(iii) σ ∧ τ = min(σ, τ) and σ ∨ τ = max(σ, τ) are stopping times.
(iv) If σ ≤ τ , then Fσ ⊂ Fτ .
(v) If (Xt)t is right-continuous and adapted then Xτ is Fτ -measurable.

Exercise 6. Prove the lemma.

Remark 1. In continuous time the technical detailes are trickier.
The process (Xt)t is adapted to (Ft)t, if Xt is Ft-measurable, and it is

progressively measureable with respect to (Ft)t, if for all t ≥ 0 and A ∈ B(Rd)

{(s,ω) : s ≤ t, Xs(ω) ∈ A} ∈ B([0, t])⊗ Ft,

where B stands for the Borel sets, and ⊗ is the product σ-algebra. In what
follows we always need progressive measureability, adaptedness is not enough.

The next statement says that the situation is not too bad.

Proposition 3. If (Xt)t is right continuous and adatped, then it is progressively
measureable.
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Example 5 (Poisson process). A Poisson process with intensity λ > 0 is
an adapted integer valued RCLL (right continuous with left limits) process
N = (Nt,Ft)t≥0 such that

(i) N has independent increments, that is Nt − Ns is independent of Fs

for any s < t,
(ii) N0 = 0 a.s.,
(iii) Nt −Ns ∼ Poisson(λ(t− s)).

Exercise 7. Show that (Nt − λt) is martingale.

Proposition 4. Let (Xt) be a martingale, and ϕ a convex function such that
E|ϕ(Xt)| < ∞ for all t ≥ 0. Then (ϕ(Xt)) is submartingale.

Furthermore if (Xt) is a submartingale and ϕ nondecreasing and convex
that E|ϕ(Xt)| < ∞ for all t ≥ 0, then (ϕ(Xt)) is a submartingale.

Example 6 (Wiener process). The Wiener process or standard Brownian
motion is an adapted process W = (Wt,Ft)t≥0 such that

(i) W has independent increments, that is Wt −Ws is independent of Fs

for any s < t,
(ii) W0 = 0 a.s.,
(iii) Wt −Ws ∼ N(0, t− s),
(iv) Wt has continuous sample path.

Exercise 8. Show that (Wt) and (W 2
t − t) are martingales.

2.2 Martingale convergence theorem

Consider an adapted stochastic process (Xt)t≥0. Fix a < b, and a finite set
F ⊂ [0,∞). Let UF denote the number of upcrossings of the interval [a, b]
by the restricted process (Xt)t∈F . Formally, let τ0 = 0, and

τ2k−1 = min{t ∈ F : t ≥ τ2k−2, Xt < a},
τ2k = min{t ∈ F : t ≥ τ2k−1, Xt > b}.

The number of upcrossings on F is

UF (a, b) = UF = max{k : τ2k < ∞}.
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We can extend the definition of infinite sets I ⊂ [0,∞) as

UI = sup{UF : F ⊂ I, F finite}.

We have the upcrossing inequality.

Theorem 6 (Upcrossing inequality). Let (Xt) be a right-continuous sub-
martingale. For any a < b and 0 ≤ S ≤ T < ∞

(b− a)EU[S,T ] ≤ E(XT − a)+ − E(XS − a)+.

Proof. Consider an enumeration of the countable set Q ∩ [S, T ] as

Q ∩ [S, T ] = {q1, q2, . . .},

and let Fn = {q1, . . . , qn} ∪ {s, t}. Then (Xt,Ft)t∈Fn is a discrete time mar-
tingale, therefore, by the upcrossing inequality

(b− a)EUFn ≤ E(XT − a)+ − E(XS − a)+

Since Fn is increasing, UFn is increasing, and by the right-continuity of (Xt)

lim
n→∞

UFn = U[S,T ] a.s.

In particular, U[S,T ] is measurable, and by the monotone convergence theorem
the result follows.

Theorem 7 (Martingale convergence theorem). Let (Xt) be a right-continuous
submartingale such that

sup
t≥0

E(X+
t ) < ∞.

Then limt→∞ Xt = X exists a.s. and E|X| < ∞.

Proof. By the upcrossing inequality and the monotone convergence theorem
for any a < b

EU[0,∞)(a, b) ≤
supt≥0 EX

+
t + |a|

b− a
.

Therefore, for any a < b the upcrossings U[0,∞)(a, b) are a.s. finite. Thus
almost surely the uppcrossings are finite for all a < b rationals, implying the
existence of the limit.

The integrability of the limit follows from Fatou’s lemma.
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