that the weak limit-2 assumption holds. Then

$$C_*(f) = \inf_{\mathbf{Q} \in \mathcal{P}(\mathbf{P})} \mathbf{E}_{\mathbf{Q}} \frac{f(\rho)}{1+r} = \frac{f(r)}{1+r},$$

and the infimum is attained at the measure \mathbf{Q}_* .

3.5 Complete markets

We proved that if EMM exists then we have the fair price for any replicable payoff. A market is *complete* if any payoff is replicable.

We have seen in Theorem 4 that on a complete arbitrage-free market any payoff f has a unique well-defined fair price $B_0 \mathbf{E}_{\mathbf{Q}} f / B_N$.

In section 2.4 we showed that a binomial market is complete.

The second fundamental theorem of asset pricing is the following.

Theorem 7. Consider an arbitrage-free market with EMM \mathbf{Q} . Then the following are equivalent:

- (i) the market is complete;
- (ii) \mathbf{Q} is the unique EMM;
- (iii) for any **Q**-martingale (M_n) there exists a predictable sequence γ_n such that M_n can be represented as

$$M_n = M_0 + \sum_{k=1}^n \gamma_k \left(\frac{S_k}{B_k} - \frac{S_{k-1}}{B_{k-1}} \right) = M_0 + \sum_{k=1}^n \sum_{i=1}^d \gamma_k^i \left(\frac{S_k^i}{B_k} - \frac{S_{k-1}^i}{B_{k-1}} \right).$$

Proof. We prove again the easy parts (i) \Rightarrow (ii), and (iii) \Leftrightarrow (i), and postpone the difficult (ii) \Rightarrow (i) implication later.

(i) \Rightarrow (ii): Assume that \mathbf{Q}_1 and \mathbf{Q}_2 are EMM's. Consider any $A \in \mathcal{F}$. We show that $\mathbf{Q}_1(A) = \mathbf{Q}_2(A)$ implying the uniqueness. Let π be a perfect hedge to $f = I_A$. Then X_n^{π}/B_n is both \mathbf{Q}_1 and \mathbf{Q}_2 martingale, so

$$\mathbf{Q}_{1}(A) = \mathbf{E}_{\mathbf{Q}_{1}} f = \mathbf{E}_{\mathbf{Q}_{1}} X_{N}^{\pi} = B_{N} \mathbf{E}_{\mathbf{Q}_{1}} \frac{X_{N}^{\pi}}{B_{N}} = B_{N} X_{0}^{\pi} = \dots = \mathbf{Q}_{2}(A).$$

(i) \Rightarrow (iii): Consider a **Q**-martingale M_n . There exists a strategy π_n such that a.s.

$$X_N^{\pi} = B_N M_N = \mathbf{i}$$

{thm:complete-mark

$$E[Y|F_{n}] = M_{n} \quad \text{markingal} \\ E[M_{n}|F_{n-1}] \stackrel{?}{=} M_{n-1} \\ E[E[Y|F_{n}]|F_{n-1}] = E[Y|F_{n-1}] \stackrel{!}{=} M_{n-1}.$$

Using that both M_n and X_n^{π}/B_n are martingales

$$M_n = \mathbf{E}_{\mathbf{Q}}[M_N | \mathcal{F}_n] = \mathbf{E}_{\mathbf{Q}}\left[\frac{X_N^{\pi}}{B_N} | \mathcal{F}_n\right] = \frac{X_n^{\pi}}{B_n} = \beta_n + \gamma_n \frac{S_n}{B_n}.$$

æ.

Thus, using that π is SF

$$\begin{split} M_n - M_{n-1} &= \Delta \beta_n + \gamma_n \frac{S_n}{B_n} - \gamma_{n-1} \frac{S_{n-1}}{B_{n-1}} \\ &= \gamma_n \left(\frac{S_n}{B_n} - \frac{S_{n-1}}{B_{n-1}} \right) + \frac{1}{B_{n-1}} \left(B_{n-1} \Delta \beta_n + S_{n-1} \Delta \gamma_n \right) \\ &= \gamma_n \left(\frac{S_n}{B_n} - \frac{S_{n-1}}{B_{n-1}} \right), \end{split}$$

as claimed.

(iii) \Rightarrow (i): Consider a payoff f. We are looking for a strategy π such that $X_N^{\pi} = f$ **Q**-a.s. We know that $(X_n^{\pi}/B_n)_n$ is a martingale, so this should be (M_n) . Now the following choice is clear: let

$$M_{n} = \mathbf{E}_{\mathbf{Q}} \begin{bmatrix} \frac{f}{B_{N}} | \mathcal{F}_{n} \end{bmatrix}.$$

Then M_{n} is a martingale, therefore by the assumption
$$M_{n} = M_{0} + \sum_{k=1}^{n} \gamma_{k} \Delta \frac{S_{k}}{B_{k}}. \cdots + \underbrace{\gamma_{n}}_{\mathbf{F}_{n}} \cdot \underbrace{\mathbf{S}_{n}}_{\mathbf{F}_{n}} \cdot \underbrace{\mathbf{S}_$$

Let

and consider the strategy $\pi_n = (\beta_n, \gamma_n)$. To see that this is indeed a strategy we have to show that it is predictable and SF. The sequence γ_n is predictable by the assumption (iii), and β_n is predictable because all the terms in M_n are \mathcal{F}_{n-1} -measurable except $\gamma_n S_n / B_n$, which is subtracted. To see that it is SF note that

$$B_{n-1}\Delta\beta_{n} + S_{n-1}\Delta\gamma_{n}$$

$$= B_{n-1}\left(M_{n} - M_{n-1} - \gamma_{n}\frac{S_{n}}{B_{n}} + \gamma_{n-1}\frac{S_{n-1}}{B_{n-1}}\right) + S_{n-1}\Delta\gamma_{n}$$

$$= B_{n-1}\left(\gamma_{n}\Delta\frac{S_{n}}{B_{n}} - \gamma_{n}\frac{S_{n}}{B_{n}} + \gamma_{n-1}\frac{S_{n-1}}{B_{n-1}}\right) + S_{n-1}\Delta\gamma_{n} = 0,$$

$$g_{n}\left(S_{n-1}^{2} - S_{n-1}^{2}\right) = 25$$

$$S_{n-1}\left(S_{n-1}^{2} - S_{n}^{2}\right)$$

showing that π is SF. It is clearly a perfect hedge since

$$X_N^{\pi} = \beta_N B_N + \gamma_N S_N = B_N M_N = f_s$$

as claimed.

3.6Proof of the difficult part of Theorem 3

Here we use strongly that Ω is finite, and let $|\Omega| = k$.

Assume that there is no arbitrage strategy. Let

$$\mathcal{V}_0 = \{ X : \Omega \to \mathbb{R} \text{ r.v. } | \exists \pi : X_0^{\pi} = 0 \text{ and } X_N^{\pi} = X \}, \mathbf{\zeta}$$

and

$$\mathcal{V}_1 = \{ X : \Omega \to \mathbb{R} \text{ r.v. } | X \ge 0, \mathbf{E}X \ge 1 \}.$$

We identify a random variable $X : \Omega \to \mathbb{R}$ with a vector in \mathbb{R}^k , as $X \leftrightarrow$ $(X(\omega_1),\ldots,X(\omega_k))$. Clearly, \mathcal{V}_0 is a linear subspace and \mathcal{V}_1 is convex set in \mathbb{R}^k .

Since there is no arbitrage strategy, $\mathcal{V}_0 \cap \mathcal{V}_1 = \emptyset$. Therefore, by the Kreps– Yan theorem, there exists a linear functional $\ell : \mathbb{R}^k \to \mathbb{R}$ such that $\ell|_{\mathcal{V}_0} \equiv 0$ and $\ell(v_1) > 0$ for all $v_1 \in \mathcal{V}_1$. A linear function in \mathbb{R}^k (in any Hilbert space) is a inner product, thus there exists $q \in \mathbb{R}^k$ such that E[2X-14. = ZE(X)-4. = 2.E(X)-4. = 2.1-2.=

$$\ell(v) = \langle v, q \rangle.$$

Define the random variables

$$X_i(\omega_j) = \delta_{i,j} \frac{1}{\mathbf{P}(\{\omega_i\})}$$

Then $X_i \ge 0$ and $\mathbf{E}X_i = 1$, so $X_i \in \mathcal{V}_1$. Furthermore

$$\ell(X_i) = \frac{q_i}{\mathbf{P}(\{\omega_i\})} > 0,$$

implying $q_i > 0$ for any *i*. Define the probability measure **Q** as

$$\mathbf{Q}(\{\omega_i\}) = \frac{q_i}{\sum_{i=1}^k q_i}.$$

It is clear that $\mathbf{Q} \sim \mathbf{P}$. We have to check that (S_n/B_n) is a **Q**-martingale. First we need a lemma.

26

 $l: \mathbb{R}^{k} \rightarrow \mathbb{R} \quad linearin$ $l(x+y) = l(x) + l(y) ; l(\alpha x) > \alpha l(x)$

x eV => x eV x,y eV > *+y eV

ス×+(1-ス)な え€[マ1]

 $\forall n: \{\tau = n\} \in \mathcal{F}_n$

- SE[X|G]di= G = SXdi **Lemma 5.** Let $(X_n)_{n=1}^N$ be an adapted process. If for any stopping time $\tau: \Omega \to \{0, \ldots, N\}$

$$\mathbf{E}X_{\tau} = \mathbf{E}X_{0}$$

then (X_n) is martingale. *Proof.* We show that $X_n = \mathbf{E}[X_N | \mathcal{F}_n]$, which implies that X is martingale. Let $A \in \mathcal{F}_n$ and consider the stopping time

$$\tau_A(\omega) = \begin{cases} n, & \omega \in A, \\ N, & \text{otherwise.} \end{cases} \quad \textbf{f}_{\boldsymbol{\xi}} = \{\boldsymbol{\beta}, \boldsymbol{\xi} \}$$

E[X|4]: - G-mh

This is indeed a stopping time, since $\{\tau_A \leq k\} = \emptyset$ for k < n, and A for $k \geq n$, which is \mathcal{F}_k -measurable. Then, by the assumption

$$\mathbf{E} \mathbf{E} \mathbf{X}_0 = \mathbf{E} X_{\tau_A} = \mathbf{E} X_n I(A) + \mathbf{E} X_N I(A^c).$$

With $A = \emptyset$ we see that $\mathbf{E}X_0 = \mathbf{E}X_N$, implying

$$\sum_{\mathbf{A}} \mathbf{R} \stackrel{*}{\Rightarrow} \mathbf{E} X_n I(A) = \mathbf{E} X_N I(A) \stackrel{*}{\Rightarrow} \sum_{\mathbf{A}} \mathbf{X}_{\mathbf{V}} \quad \text{off}$$
 nears that

This exactly n

$$X_n = \mathbf{E}[X_N | \mathcal{F}_n],$$

as claimed.

We show that (S_n/B_n) satisfies the condition of the lemma above. Let τ be a stopping time and define the strategy

$$\beta_n = \frac{S_{\tau}}{B_{\tau}} I(\tau \le n-1) - \frac{S_0}{B_0}, \quad \gamma_n = I(\tau > n-1).$$

Since $\{\tau < n\} = \{\tau \le n - 1\} \in \mathcal{F}_{n-1}$, the sequence (β_n, γ_n) is predictable. Furthermore,

$$B_{n-1}\Delta\beta_n + S_{n-1}\Delta\gamma_n = \frac{S_{\tau}}{B_{\tau}}B_{n-1}I(\tau = n-1) \bigoplus S_{n-1}I(\tau = n-1) = 0$$

so it is SF. Finally,

$$X_0^{\pi} = -\frac{S_0}{B_0}B_0 + S_0 = 0, \qquad \qquad \Delta y_n = I(\tau > n-1) - I(\tau > n-2) = -I(\tau = n-1)$$

3.7 Proof of the difficult part of Theorem 7

Here we prove the implication (ii) \Rightarrow (i).

We use the notation of the previous proof. Let

$$\mathcal{V}_2 = \{ X : \Omega \to \mathbb{R} \text{ r.v. } | \mathbf{E}_{\mathbf{Q}} X = 0 \}$$

Then \mathcal{V}_2 is a linear subspace in \mathbb{R}^k and we have seen in the previous proof that $\mathcal{V}_0 \subset \mathcal{V}_2$. We claim that equality holds.

Assume first that this is indeed true. Then for any claim X the centered version $X - \mathbf{E}_{\mathbf{Q}} X \in \mathcal{V}_2 = \mathcal{V}_0$, meaning that there is a perfect hedge. Thus the market is complete. So we only have to show that $\mathcal{V}_0 = \mathcal{V}_2$.

Assume on the contrary that $\mathcal{V}_0 \neq \mathcal{V}_2$. Then there is an $y \in \mathcal{V}_2$, which is orthogonal to \mathcal{V}_0 . Since $q_i > 0$ (see the previous proof) for all $i = 1, \ldots, k$,

we may choose $\varepsilon > 0$ small enough such that

$$q'_i = q_i - \varepsilon y_i > 0$$
 for all *i*. $q' = q - \varepsilon \cdot q$

As both q and y are orthogonal to \mathcal{V}_0 , q' is also orthogonal. Define the measure

$$\mathbf{Q}'(\{\omega_i\}) = \frac{q'_i}{\sum_{i=1}^k q'_i}.$$

Exactly as in the previous proof we can show that \mathbf{Q}' is EMM. The uniqueness of the EMM implies

$$\frac{q_i'}{\sum_{i=1}^k q_i'} = \frac{q_i}{\sum_{i=1}^k q_i},$$

that is, using also the definition of q',

tion of
$$q'$$
,
 $q = \alpha q' = \alpha q - \alpha \varepsilon y$,
 $\boldsymbol{\alpha} = \frac{\boldsymbol{\beta} \cdot \boldsymbol{\beta}}{\boldsymbol{\delta}' \boldsymbol{g}'}$

with $\alpha = \sum q_i / \sum q'_i$. Thus

$$(1-\alpha)q = -\alpha\varepsilon y.$$

But y and q are orthogonal, which is a contradiction. The proof is complete.

4 Girsanov's theorem in discrete time

4.1 Second proof of the difficult part of Theorem 3

Assume that d = 1 and first consider the one-step model with $B_0 = B_1 = 1$. The stock price S_0 is known, and the only randomness here is S_1 .

Exercise 9. The no arbitrage assumption (in this simple market) is equivalent to

$$\mathbf{P}(\Delta S_1 > 0)\mathbf{P}(\Delta S_1 < 0) > 0.$$

Furthermore, (S_n) is martingale if

$$\mathbf{E}_{\mathbf{Q}}S_1 = S_0.$$

Therefore we have to construct a measure \mathbf{Q} such that $\mathbf{E}_{\mathbf{Q}}\Delta S_1 = 0$. This is done in the following lemma.