that the weak limit-2 assumption holds. Then

$$
C_{*}(f)=\inf _{\mathbf{Q} \in \mathcal{P}(\mathbf{P})} \mathbf{E}_{\mathbf{Q}} \frac{f(\rho)}{1+r}=\frac{f(r)}{1+r},
$$

and the infimum is attained at the measure \mathbf{Q}_{*}.

3.5 Complete markets

We proved that if EMM exists then we have the fair price for any replicable payoff. A market is complete if any payoff is replicable.

We have seen in Theorem 4 that on a complete arbitrage-free market any payoff f has a unique well-defined fair price $B_{0} \mathbf{E}_{\mathbf{Q}} f / B_{N}$.

In section 2.4 we showed that a binomial market is complete.
The second fundamental theorem of asset pricing is the following.
Theorem 7. Consider an arbitrage-free market with EMM Q. Then the following are equivalent:
(i) the market is complete;
(ii) \mathbf{Q} is the unique EMM;
(iii) for any \mathbf{Q}-martingale (M_{n}) there exists a predictable sequence γ_{n} such that M_{n} can be represented as

$$
M_{n}=M_{0}+\sum_{k=1}^{n} \gamma_{k}\left(\frac{S_{k}}{B_{k}}-\frac{S_{k-1}}{B_{k-1}}\right)=M_{0}+\sum_{k=1}^{n} \sum_{i=1}^{d} \gamma_{k}^{i}\left(\frac{S_{k}^{i}}{B_{k}}-\frac{S_{k-1}^{i}}{B_{k-1}}\right) .
$$

Proof. We prove again the easy parts (i) \Rightarrow (ii), and (iii) \Leftrightarrow (i), and postpone the difficult (ii) \Rightarrow (i) implication later.
(i) \Rightarrow (ii): Assume that \mathbf{Q}_{1} and \mathbf{Q}_{2} are EMM's. Consider any $A \in \mathcal{F}$. We show that $\mathbf{Q}_{1}(A)=\mathbf{Q}_{2}(A)$ implying the uniqueness. Let π be a perfect hedge to $f=I_{A}$. Then X_{n}^{π} / B_{n} is both \mathbf{Q}_{1} and \mathbf{Q}_{2} martingale, so

$$
\mathbf{Q}_{1}(A)=\mathbf{E}_{\mathbf{Q}_{1}} f=\mathbf{E}_{\mathbf{Q}_{1} X_{N}} X_{N}^{\pi}=B_{N} \mathbf{E}_{\mathbf{Q}_{1}} \frac{X_{N}^{\pi}}{B_{N}} \cdot=B_{N}\left(\frac{X_{\mathbf{n}}}{\mathbf{z}_{\mathbf{n}}}\right) \underset{\mathbf{B}_{0}}{\mathbf{B}_{0}}=\ldots=\mathbf{Q}_{2}(A) .
$$

(i) \Rightarrow (iii): Consider a \mathbf{Q}-martingale M_{n}. There exists a strategy π_{n} such that a.s.

$$
X_{N}^{\pi}=B_{N} M_{N}=\boldsymbol{f}
$$

$$
\begin{aligned}
& E\left[Y \mid F_{n}\right]=M_{n} \text { matiyid } \\
& E\left[\mu_{n} \mid F_{n-1}\right)^{2}=\mu_{n-1} \\
& E\left[E\left[\left|\left.\right|_{n}\right] \mid F_{n-1}\right]=E\left[y \mid F_{n-1}\right]=M_{-1}\right. \text {. }
\end{aligned}
$$

Using that both M_{n} and X_{n}^{π} / B_{n} are martingales

$$
M_{n}=\mathbf{E}_{\mathbf{Q}}\left[M_{N} \mid \mathcal{F}_{n}\right]=\mathbf{E}_{\mathbf{Q}}\left[\left.\frac{X_{N}^{\pi}}{B_{N}} \right\rvert\, \mathcal{F}_{n}\right]=\frac{X_{n}^{\pi}}{B_{n}}=\beta_{n}+\gamma_{n} \frac{S_{n}}{B_{n}} . \quad \mathbf{X}_{\boldsymbol{h}}=\boldsymbol{\beta}_{\boldsymbol{n}} \cdot \mathbf{Z}_{\mathbf{h}}+\boldsymbol{y}_{h} \cdot \mathbf{S}_{n}
$$

Thus, using that π is SF

$$
\begin{aligned}
M_{n}-M_{n-1} & =\Delta \beta_{n}+\gamma_{n} \frac{S_{n}}{B_{n}}-\gamma_{n-1} \frac{S_{n-1}}{B_{n-1}} \\
& =\gamma_{n}\left(\frac{S_{n}}{B_{n}}-\frac{S_{n-1}}{B_{n-1}}\right)+\frac{1}{B_{n-1}}(\underbrace{B_{n-1} \widehat{\Delta \beta_{n}}+S_{n-1} \cdot \gamma_{n}}_{=0 \text { matt } \pi \text { infin }}) \\
& =\gamma_{n}\left(\frac{S_{n}}{B_{n}}-\frac{S_{n-1}}{B_{n-1}}\right),
\end{aligned}
$$

as claimed.
(iii) \Rightarrow (i): Consider a payoff f. We are looking for a strategy π such that $X_{N}^{\pi}=f \mathbf{Q}$-a.s. We know that $\left(X_{n}^{\pi} / B_{n}\right)_{n}$ is a martingale, so this should be $\left(M_{n}\right)$. Now the following choice is clear: let

$$
M_{n}=\mathbf{E}_{\mathbf{Q}}\left[\left.\frac{f}{B_{N}} \right\rvert\, \mathcal{F}_{n}\right]
$$

Then M_{n} is a martingale, therefore by the assumption

Let

$$
M_{n}=M_{0}+\sum_{k=1}^{n} \gamma_{k} \Delta \frac{S_{k}}{B_{k}} \cdot \cdots+\gamma_{n} \cdot\left(\frac{S_{n}}{B_{n}}-\frac{S_{n-1}}{B_{n}-1}\right)
$$

$$
\beta_{n}=M_{n}-\longdiv { \gamma _ { n } \frac { S _ { n } } { B _ { n } } }
$$

and consider the strategy $\pi_{n}=\left(\beta_{n}, \gamma_{n}\right)$. To see that this is indeed a strategy we have to show that it is predictable and SF. The sequence γ_{n} is predictable by the assumption (iii), and β_{n} is predictable because all the terms in M_{n} are \mathcal{F}_{n-1}-measurable except $\gamma_{n} S_{n} / B_{n}$, which is subtracted. To see that it is SF note that

$$
\begin{aligned}
& B_{n-1} \Delta \beta_{n}+S_{n-1} \Delta \gamma_{n} \\
& =B_{n-1}\left(M_{n}-M_{n-1}-\gamma_{n} \frac{S_{n}}{B_{n}}+\gamma_{n-1} \frac{S_{n-1}}{B_{n-1}}\right)+S_{n-1} \Delta \gamma_{n} \\
& =B_{n-1}\left(\gamma_{n} \Delta \frac{S_{n}}{B_{n}}-\gamma_{n} \frac{S / n}{B_{n}}+\gamma_{n-1} \frac{S_{n-1}}{B_{n-1}}\right)+S_{n-1} \Delta \gamma_{n}=0, \\
& \quad \gamma_{n}\left(\frac{S}{\beta_{n}}-\frac{S_{n-1}}{B_{n-1}}\right) 25 \quad S_{n-1}\left(\beta_{n-1}-\gamma_{n}\right)
\end{aligned}
$$

showing that π is SF . It is clearly a perfect hedge since

$$
X_{N}^{\pi}=\beta_{N} B_{N}+\gamma_{N} S_{N}=B_{N} M_{N}=f
$$

as claimed.

3.6 Proof of the difficult part of Theorem 3

Here we use strongly that Ω is finite, and let $|\Omega|=k$.

$$
\begin{aligned}
& \text { that there is no arbitrage strategy. Let } \\
& \mathcal{V}_{0}=\left\{X: \Omega \rightarrow \mathbb{R} \text { r.v. } \mid \exists \pi: X_{0}^{\pi}=0 \text { and } X_{N}^{\pi}=X\right\}, \subset \mathbb{R}^{k}\left\{\begin{array}{l}
\Rightarrow \alpha x \in \mathcal{V}_{0} \\
\text { of int. }
\end{array} \quad \begin{array}{l}
x, y \in \nu_{0} \\
\Rightarrow x+y \in \gamma_{0}
\end{array}\right.
\end{aligned}
$$

Assume that there is no arbitrage strategy. Let
and

We identify a random variable $X: \Omega \rightarrow \mathbb{R}$ with a vector in \mathbb{R}^{k}, as $X \leftrightarrow$ $\left(X\left(\omega_{1}\right), \ldots, X\left(\omega_{k}\right)\right)$. Clearly, \mathcal{V}_{0} is a linear subspace and \mathcal{V}_{1} is convex set in \mathbb{R}^{k}.

Since there is no arbitrage strategy, $\mathcal{V}_{0} \cap \mathcal{V}_{1}=\emptyset$. Therefore, by the GrepsYam theorem, there exists a linear functional $\ell: \mathbb{R}^{k} \rightarrow \mathbb{R}$ such that $\left.\ell\right|_{\mathcal{\nu}_{0}} \equiv 0$ and $\ell\left(v_{1}\right)>0$ for all $v_{1} \in \mathcal{V}_{1}$. A linear function in \mathbb{R}^{k} (in any Hilbert space) is a inner product, thus there exists $q \in \mathbb{R}^{k}$ such that

$$
\ell(v)=\langle v, q\rangle
$$

Define the random variables

$$
X_{i}\left(\omega_{j}\right)=\delta_{i, j} \frac{1}{\mathbf{P}\left(\left\{\omega_{i}\right\}\right)}
$$

Then $X_{i} \geq 0$ and $\mathbf{E} X_{i}=1$, so $X_{i} \in \mathcal{V}_{1}$. Furthermore

$$
\ell\left(X_{i}\right)=\frac{q_{i}}{\mathbf{P}\left(\left\{\omega_{i}\right\}\right)}>0
$$

implying $q_{i}>0$ for any i. Define the probability measure \mathbf{Q} as

$$
\mathbf{Q}\left(\left\{\omega_{i}\right\}\right)=\frac{q_{i}}{\sum_{i=1}^{k} q_{i}}
$$

It is clear that $\mathbf{Q} \sim \mathbf{P}$. We have to check that $\left(S_{n} / B_{n}\right)$ is a \mathbf{Q}-martingale. First we need a lemma.

$$
l: \quad \begin{aligned}
& \quad R^{h} \rightarrow \mathbb{R} \quad \text { liven }_{\prime}^{\prime} \\
& l(x+y)=\ell(x)+C(y) ; l(\alpha x)=\alpha \ell(x)
\end{aligned}
$$

$\forall_{n}:\{\tau=n\} \in F_{n}$

Lemma 5. Let $\left(X_{n}\right)_{n=1}^{N}$ be an adapted process. If for any stopping time $\tau: \Omega \rightarrow\{0, \ldots, N\}$

$$
\mathbf{E} X_{\tau}=\mathbf{E} X_{0},
$$

$-\int_{G} E[x / y] d=$

$=\int_{G} X d P$
then $\left(X_{n}\right)$ is martingale.
Proof. We show that $X_{n}=\mathbf{E}\left[X_{N} \mid \mathcal{F}_{n}\right]$, which implies that X is martingale.
Let $A \in \mathcal{F}_{n}$ and consider the stopping time

$$
\tau_{A}(\omega)= \begin{cases}n, & \omega \in A \\ N, & \text { otherwise }\end{cases}
$$

This is indeed a stopping time, since $\left\{\tau_{A} \leq k\right\}=\emptyset$ for $k<n$, and A for $k \geq n$, which is \mathcal{F}_{k}-measurable. Then, by the assumption

$$
\mathrm{E}\left(\mathrm{~N}_{\mathrm{N}}\right)=\mathrm{E} X_{0}=\mathrm{E} X_{\tau_{A}}=\mathrm{E} X_{n} I(A)+\mathrm{E} X_{N} I\left(A^{c}\right) .
$$

With $A=\emptyset$ we see that $\mathbf{E} X_{0}=\mathbf{E} X_{N}$, implying

This exactly means that

This exactly mean that

$$
X_{n}=\mathbf{E}\left[X_{N} \mid \mathcal{F}_{n}\right],
$$

as claimed.
We show that $\left(S_{n} / B_{n}\right)$ satisfies the condition of the lemma above. Let τ be a stopping time and define the strategy

$$
\beta_{n}=\frac{S_{\tau}}{B_{\tau}} I(\tau \leq n-1)-\frac{S_{0}}{B_{0}}, \quad \gamma_{n}=I(\tau>n-1)
$$

Since $\{\tau<n\}=\{\tau \leq n-1\} \in \mathcal{F}_{n-1}$, the sequence $\left(\beta_{n}, \gamma_{n}\right)$ is predictable.
Furthermore,

$$
B_{n-1} \Delta \beta_{n}+S_{n-1} \Delta \gamma_{n}=\frac{S_{\tau}}{B_{\tau}} B_{n-1} I(\tau=n-1) \bar{\bigodot} S_{n-1} I(\tau=n-1)=0
$$

so it is SF. Finally,

$$
X_{0}^{\pi}=-\frac{S_{0}}{B_{0}} B_{0}+S_{0}=0, \quad \begin{aligned}
\gamma_{n} & =-I(\tau=n-1)
\end{aligned}
$$

$\Delta y_{n}=I(\tau>n-1)-I(\tau>n-2)$

Figure 7: Choice of y
so $X_{N}^{\pi} \in \mathcal{V}_{0}$. Therefore

$$
\begin{aligned}
& 0 \stackrel{\overrightarrow{ }}{=} \mathbf{E}_{\mathbf{Q}} X_{N}^{\pi}=\mathbf{E}_{\mathbf{Q}}\left(3_{N} B_{N}+\gamma_{N} S_{N}\right) \\
= & \mathbf{E}_{\mathbf{Q}}\left(\left(\frac{S_{\tau}}{B_{\tau}} I(\tau \leq N-1)-\frac{S_{0}}{B_{0}}\right) B_{N}+\frac{S_{\tau}}{B_{\tau}} I(\tau=N) B_{N}\right)
\end{aligned}
$$

$$
=B_{N} \mathrm{E}_{\mathrm{Q}}\left(\frac{S_{\tau}}{B_{\tau}}-\frac{S_{0}}{B_{0}}\right) . \quad \Rightarrow \quad t_{t} \text { meqaill divide: } E_{Q} \frac{S_{I}}{B_{\tau}}=E_{Q} \frac{S_{0}}{8_{0}}
$$

That is $\left(S_{n} / B_{n}\right)$ is indeed a \mathbf{Q}-martingale.

3.7 Proof of the difficult part of Theorem 7

Here we prove the implication (ii) \Rightarrow (i).
We use the notation of the previous proof. Let

$$
\mathcal{V}_{2}=\left\{X: \Omega \rightarrow \mathbb{R} \text { r.v. } \mid \mathbf{E}_{\mathbf{Q}} X=0\right\} .
$$

Then \mathcal{V}_{2} is a linear subspace in \mathbb{R}^{k} and we have seen in the previous proof that $\mathcal{V}_{0} \subset \mathcal{V}_{2}$. We claim that equality holds.

Assume first that this is indeed true. Then for any claim X the centered version $X-\mathbf{E}_{\mathbf{Q}} X \in \mathcal{V}_{2}=\mathcal{V}_{0}$, meaning that there is a perfect hedge. Thus the market is complete. So we only have to show that $\mathcal{V}_{0}=\mathcal{V}_{2}$.

Assume on the contrary that $\mathcal{V}_{0} \neq \mathcal{V}_{2}$. Then there is an $y \in \mathcal{V}_{2}$, which is orthogonal to \mathcal{V}_{0}. Since $q_{i}>0$ (see the previous proof) for all $i=1, \ldots, k$,
we may choose $\varepsilon>0$ small enough such that

$$
q_{i}^{\prime}=q_{i}-\varepsilon y_{i}>0 \quad \text { for all } i
$$

As both q and y are orthogonal to $\mathcal{V}_{0}, q^{\prime}$ is also orthogonal. Define the measure

$$
\mathbf{Q}^{\prime}\left(\left\{\omega_{i}\right\}\right)=\frac{q_{i}^{\prime}}{\sum_{i=1}^{k} q_{i}^{\prime}}
$$

Exactly as in the previous proof we can show that \mathbf{Q}^{\prime} is EMM. The uniqueness of the EMM implies

$$
\frac{q_{i}^{\prime}}{\sum_{i=1}^{k} q_{i}^{\prime}}=\frac{q_{i}}{\sum_{i=1}^{k} q_{i}}
$$

that is, using also the definition of q^{\prime},

$$
q=\alpha q^{\prime}=\alpha q-\alpha \varepsilon y
$$

with $\alpha=\sum q_{i} / \sum q_{i}^{\prime}$. Thus

$$
(1-\alpha) q=-\alpha \varepsilon y
$$

But y and q are orthogonal, which is a contradiction. The proof is complete.

4 Girsanov's theorem in discrete time

4.1 Second proof of the difficult part of Theorem 3

Assume that $d=1$ and first consider the one-step model with $B_{0}=B_{1}=1$. The stock price S_{0} is known, and the only randomness here is S_{1}.

Exercise 9. The no arbitrage assumption (in this simple market) is equivalent to

$$
\mathbf{P}\left(\Delta S_{1}>0\right) \mathbf{P}\left(\Delta S_{1}<0\right)>0
$$

Furthermore, $\left(S_{n}\right)$ is martingale if

$$
\mathbf{E}_{\mathbf{Q}} S_{1}=S_{0}
$$

Therefore we have to construct a measure \mathbf{Q} such that $\mathbf{E}_{\mathbf{Q}} \Delta S_{1}=0$. This is done in the following lemma.

