Introduction	Fix t, x	Growth rate
00000	000	0000000

On the solution to the stochastic heat equation with Lévy noise

Péter Kevei

University of Szeged

EVA

A.s. properties of SHE with Lévy noise

University of Szeged

0000	Growth rate
00000 000	0000000

Joint work with Carsten Chong (Columbia University).

Introduction	Fix t, x	Growth rate
00000	000	0000000

Outline

Introduction Setup Motivation

Fix t, x

Existence Tail

Growth rate

Continuous sampling Spatial growth rate

A.s. properties of SHE with Lévy noise

Introduction	Fix t, x	Growth rate
• 0000 00000	000	0000000

Outline

Introduction Setup Motivation

Fix *t*, *x* Existenc Tail

Growth rate

Continuous sampling Spatial growth rate

Introduction	Fix t, x	Growth rate
0000	000	0000000 0000000

Heat equation - deterministic case

$$\partial_t Y(t,x) = \Delta Y(t,x) + h(t,x), \quad (t,x) \in (0,\infty) \times \mathbb{R}^d,$$

 $Y(0,\cdot) = f$

 Δ Laplace operator, *h* external heating/cooling

Introduction	Fix t, x	Growth rate
00000	000	0000000

Heat equation - deterministic case

$$\partial_t Y(t,x) = \Delta Y(t,x) + h(t,x), \quad (t,x) \in (0,\infty) \times \mathbb{R}^d,$$

 $Y(0,\cdot) = f$

 Δ Laplace operator, *h* external heating/cooling Solution:

$$Y(t,x) = \int_{\mathbb{R}^d} g(t,x-y)f(y) \mathrm{d}y + \int_0^t \int_{\mathbb{R}^d} g(t-s,x-y)h(s,y) \mathrm{d}y \mathrm{d}s,$$

where

$$g(t,x) = \frac{1}{(4\pi t)^{d/2}} e^{-\frac{|x|^2}{4t}}.$$

A.s. properties of SHE with Lévy noise

Introduction	Fix t, x	Growth rate
00000	000	0000000

Stochastic heat equation

$$\partial_t Y(t,x) = \Delta Y(t,x) + \xi(t,x), \quad (t,x) \in (0,\infty) \times \mathbb{R},$$

 $Y(0,\cdot) = f$

 ξ is a space-time Lévy noise.

Introduction	Fix t, x	Growth rate
00000	000	0000000

Consider the heat equation ($f \equiv 0$)

$$\partial_t Y(t,x) = \Delta Y(t,x) + \dot{\Lambda}(t,x),$$

where

$$\Lambda(\mathrm{d} t,\mathrm{d} x)=m\,\mathrm{d} t\mathrm{d} x+\int_{(1,\infty)}z\,\mu(\mathrm{d} t,\mathrm{d} x,\mathrm{d} z)+\int_{(0,1]}z\,(\mu-\nu)(\mathrm{d} t,\mathrm{d} x,\mathrm{d} z),$$

 μ Poisson random measure on $(0, \infty) \times \mathbb{R}^d \times (0, \infty)$, intensity $\nu(dt, dx, dz) = dt dx \lambda(dz)$. Solution:

$$Y(t,x) = \int_0^t \int_{\mathbb{R}^d} g(t-s,x-y) \Lambda(\mathrm{d}s,\mathrm{d}y) = \sum_{\tau_i \leq t} g(t-\tau_i,x-\eta_i)\zeta_i.$$
$$g(t,x) = \frac{1}{(4\pi t)^{d/2}} e^{-\frac{|x|^2}{4t}}$$

A.s. properties of SHE with Lévy noise

Introduction	Fix t, x	Growth rate
00000	000 000	0000000 0000000

Gaussian noise

 ξ space-time white noise - d = 1Khoshnevisan, Kim, Xiao, Conus, Foondun, Joseph, ..., 2010-Khoshnevisan, *Analyis of Stochastic Partial Differential Equations*, 2014, AMS

Introduction	Fix t, x	Growth rate
00000 00000	000	0000000

Outline

Introduction Setup Motivation

Fix *t*, *x* Existenc Tail

Growth rate

Continuous sampling Spatial growth rate

Introduction	Fix t, x	Growth rate
00000	000	0000000

Moments

$$\mathbf{E}[Y(t,x)] = \int_0^t \int_{\mathbb{R}^d} g(t-s,x-y) \, \mathrm{d}y \, \mathrm{d}s$$

= $\int_0^t 1 \, \mathrm{d}s = t, \quad (t,x) \in [0,\infty) \times \mathbb{R}^d.$

Introduction	Fix t, x	Growth rate
00000	000	0000000
0000	000	0000000

Moments

$$\mathbf{E}[Y(t,x)] = \int_0^t \int_{\mathbb{R}^d} g(t-s,x-y) \, \mathrm{d}y \, \mathrm{d}s$$
$$= \int_0^t 1 \, \mathrm{d}s = t, \quad (t,x) \in [0,\infty) \times \mathbb{R}^d.$$
$$\operatorname{Var} Y(t,x) = \begin{cases} \frac{1}{4\sqrt{2\pi}}\sqrt{t}, & \text{for } d = 1, \\ \infty, & \text{otherwise.} \end{cases}$$

Introduction ○○○○○ ○○●○○	Fix <i>t</i> , <i>x</i> 000 000	Growth rate 00000000 0000000
Motivation		

Proposition Let t_n be a sequence increasing to infinity. Then

$$\lim_{n\to\infty}\frac{Y_0(t_n)}{t_n}=1 \quad a.s.$$

holds, if for some $\varepsilon > 0$

$$\begin{cases} \sum_{n=1}^{\infty} t_n^{\varepsilon - 9/4} < \infty, & \text{ for } d = 1, \\ \sum_{n=1}^{\infty} t_n^{\varepsilon - (1 + 2/d)} < \infty, & \text{ for } d \geq 2. \end{cases}$$

Introduction ○○○○○ ○○●○○	Fix <i>t</i> , <i>x</i> 000 000	Growth rate 00000000 0000000
Motivation		

Proposition Let t_n be a sequence increasing to infinity. Then

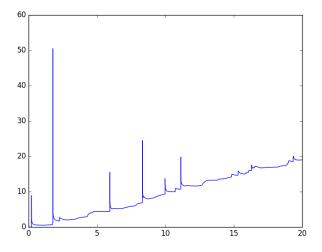
$$\lim_{n\to\infty}\frac{Y_0(t_n)}{t_n}=1 \quad a.s.$$

holds, if for some $\varepsilon > 0$

$$\begin{cases} \sum_{n=1}^{\infty} t_n^{\varepsilon - 9/4} < \infty, & \text{ for } d = 1, \\ \sum_{n=1}^{\infty} t_n^{\varepsilon - (1+2/d)} < \infty, & \text{ for } d \ge 2. \end{cases}$$

In any dimension $Y_0(n)/n \rightarrow 1$ a.s.

Introduction	Fix <i>t</i> , <i>x</i>	Growth rate
○○○○	000	00000000
○○○●○	000	0000000



A.s. properties of SHE with Lévy noise

University of Szeged

Introduction	Fix t, x	Growth rate
00000 00000	000	0000000

It turns out that

$$\limsup_{t\to\infty}\frac{Y_0(t)}{t}=\infty \text{ a.s.}$$

Introduction	Fix t, x	Growth rate
00000		0000000

Existence

Outline

ntroduction Setup Motivation

Fix *t*, *x* Existence

Growth rate

Continuous sampling Spatial growth rate

Introduction	Fix t, x	Growth rate
00000	000	00000000
00000	000	0000000

Existence

$$Y(t,x) = \int_0^t \int_{\mathbb{R}^d} g(t-s,x-y) \Lambda(\mathrm{d} s,\mathrm{d} y) = \sum_{\tau_i \leq t} g(t-\tau_i,x-\eta_i) \zeta_i.$$

$$g(t,x) = \frac{1}{(4\pi t)^{d/2}} e^{-\frac{|x|^2}{4t}}$$
$$\eta(B) = \nu \Big(\{ (s,y,z) : s \le t, g(s,y)z \in B \} \Big)$$

Introduction	Fix t, x	Growth rate
00000	000	0000000

Existence

Theorem Y(t, x) exists iff

$$\int_{(1,\infty)} (\log z)^{d/2} \,\lambda(\mathrm{d} z) < \infty, \ \begin{cases} \int_{(0,1]} z^2 \,\lambda(\mathrm{d} z) < \infty & d = 1, \\ \int_{(0,1]} z^2 |\log z| \,\lambda(\mathrm{d} z) < \infty & d = 2, \\ \int_{(0,1]} z^{1+2/d} \,\lambda(\mathrm{d} z) < \infty & d \ge 3. \end{cases}$$

 η is a Lévy measure and

$$\mathbf{E}[e^{\mathrm{i}\theta Y(t,x)}] = \exp\left\{\mathrm{i}\theta A + \int_{(0,\infty)} \left(e^{\mathrm{i}\theta u} - 1 - \mathrm{i}\theta u\mathbb{1}(u \le 1)\right)\eta(\mathrm{d}u)\right\}$$

Application of Rajput & Rosinski 1989

Introduction	Fix t, x	Growth rate
00000	000 •00	0000000 0000000

Tail

Outline

ntroduction Setup Motivation

Fix *t*, *x* Existenc Tail

Growth rate

Continuous sampling Spatial growth rate

Introduction	Fix t, x	Growth rate
00000		0000000

Tail

$$\eta(\boldsymbol{B}) = \nu\Big(\{(\boldsymbol{s}, \boldsymbol{y}, \boldsymbol{z}) : \, \boldsymbol{s} \leq \boldsymbol{t}, \, \boldsymbol{g}(\boldsymbol{s}, \boldsymbol{y}) \boldsymbol{z} \in \boldsymbol{B}\}\Big), \, \nu = \text{Leb} \times \lambda$$

Lemma (i) If $m_{1+2/d}(\lambda) < \infty$

$$\overline{\eta}(r) \sim r^{-1-2/d} rac{d^{d/2}}{2\pi (d+2)^{d/2+1}} m_{1+2/d}(\lambda), \qquad r o \infty.$$

(ii) If
$$\overline{\lambda}(r) = \ell(r)r^{-\alpha}$$
 for $\alpha \in (0, 1 + \frac{2}{d}]$,

$$\overline{\eta}(r) \sim \begin{cases} \ell(r) r^{-\alpha} \frac{D^{1+2/d-\alpha}}{2d\pi\alpha^{d/2}(1+\frac{2}{d}-\alpha)} & \text{if } \alpha < 1+\frac{2}{d}, \\ L(r) r^{-1-2/d} (2d\pi(1+\frac{2}{d})^{d/2})^{-1} & \text{if } \alpha = 1+\frac{2}{d}, \end{cases}$$

where $L(r) = \int_1^r \ell(u) u^{-1} \, \mathrm{d}u$, $D = (4\pi t)^{d/2}$.

Introduction	Fix t, x	Growth rate
00000	000	0000000

$$\overline{Y}(t) = \sup_{\tau_i \leq t} g(t - \tau_i, \eta_i) \zeta_i$$

Theorem
(*i*)
$$\overline{\eta}$$
 is subexponential.
(*ii*) As $r \to \infty$,

$$\mathbf{P}(\mathbf{Y}(t, \mathbf{x}) > \mathbf{r}) \sim \mathbf{P}(\overline{\mathbf{Y}}(t) > \mathbf{r}) \sim \overline{\eta}(\mathbf{r}).$$

(iii) For $\alpha \in [0, 1 + \frac{2}{d})$, $\overline{\eta} \in \mathcal{RV}_{-\alpha}$ iff $\overline{\lambda} \in \mathcal{RV}_{-\alpha}$. Embrechts, Goldie, Veraverbeke ('79), Pakes ('04)

Introduction	Fix t, x	Growth rate
00000	000	0000000 0000000

Outline

ntroduction Setup Motivation

Fix *t*, *x* Existence Tail

Growth rate

Continuous sampling Spatial growth rate

A.s. properties of SHE with Lévy noise

Introduction	Fix t, x	Growth rate
00000	000 000	0000000

Simplification

Assume that $\lambda = \delta_1$, $\Lambda = N$ standard Poisson point process.

Introduction	Fix <i>t</i> , <i>x</i>	Growth rate
00000	000	○○●○○○○○
00000	000	○○○○○○○

Theorem Let $f:[0,\infty) \to [0,\infty)$ be a nondecreasing function. If

$$\int_1^\infty \frac{1}{f(t)} \mathrm{d}t = \infty,$$

then

$$\limsup_{t\to\infty}\frac{Y_0(t)}{f(t)}=\infty \quad a.s.$$

Conversely, if the integral above is finite then

$$\limsup_{t\to\infty}\frac{Y_0(t)}{f(t)}=0 \quad a.s.$$

Furthermore, $\liminf_{t\to\infty} Y_0(t)/t = 1$ *a.s.*

Introduction	Fix t, x	Growth rate
00000	000	0000000

Gaussian case

Theorem

Suppose that Λ is a Gaussian space-time white noise in one spatial dimension. Then, a.s.

$$\limsup_{t\to\infty}\frac{Y_0(t)}{(2t/\pi)^{1/4}\sqrt{\log\log t}}=-\liminf_{t\to\infty}\frac{Y_0(t)}{(2t/\pi)^{1/4}\sqrt{\log\log t}}=1.$$

In particular, the SLLN holds: $\lim_{t\to\infty} \frac{Y_0(t)}{t} = 0$ a.s. Follows from Watanabe (1970).

Introduction 00000 00000	Fix <i>t</i> , <i>x</i> 000 000	Growth rate
Continuous sampling		

Proof

For $x \in \mathbb{R}^d$, g(t, x) is increasing on $[0, |x|^2/(2d)]$, decreasing on $[|x|^2/(2d), \infty)$, and its maximum is

$$g(|x|^2/(2d),x) = \left(rac{d}{2\pi e}
ight)^{d/2} |x|^{-d}.$$

Jump at *x* causes a peak of size $|x|^{-d}$.

Introduction 00000 00000	Fix <i>t</i> , <i>x</i> 000 000	Growth rate ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○
Continuous sampling		

Proof

Assume first $\int_{1}^{\infty} 1/f(t) dt = \infty$. Let K > 0 be fix large.

$$A_n = \left\{ N\left([n, n+1] \times B([Kf(n+2)]^{-1/d}) \right) \ge 1 \right\}, \ n \ge 0.$$

Introduction 00000 00000	Fix <i>t</i> , <i>x</i> 000 000	Growth rate

Proof

Assume first $\int_{1}^{\infty} 1/f(t) dt = \infty$. Let K > 0 be fix large.

$$A_n = \left\{ N\left([n, n+1] \times B([Kf(n+2)]^{-1/d}) \right) \ge 1 \right\}, \ n \ge 0.$$

Since N is a homogeneous Poisson process, we have

$$\mathbf{P}(A_n) = 1 - e^{-v_d/[Kf(n+2)]} \sim \frac{v_d}{Kf(n+2)},$$

Introduction ooooo ooooo	Fix <i>t</i> , <i>x</i> 000 000	Growth rate

Proof

Assume first $\int_{1}^{\infty} 1/f(t) dt = \infty$. Let K > 0 be fix large.

$$A_n = \left\{ N\left([n, n+1] \times B([Kf(n+2)]^{-1/d}) \right) \ge 1 \right\}, \ n \ge 0.$$

Since N is a homogeneous Poisson process, we have

$$\mathbf{P}(A_n) = 1 - e^{-v_d/[Kf(n+2)]} \sim \frac{v_d}{Kf(n+2)},$$

and thus $\sum_{n=1}^{\infty} \mathbf{P}(A_n) = \infty$. A_n 's are independent, by Borel–Cantelli A_n occurs infinitely many times.

Introduction	Fix <i>t</i> , <i>x</i>	Growth rate
00000	000	○○○○○○●○
00000	000	○○○○○○○

Proof

$$A_n = \left\{ N\left([n, n+1] \times B([Kf(n+2)]^{-1/d}) \right) \ge 1 \right\}, \ n \ge 0.$$

On A_n ,

$$\sup_{t\in [n,n+2]} Y_0(t) \ge (2\pi e/d)^{-d/2} K f(n+2),$$

Introduction	Fix t, x	Growth rate
00000	000 000	0000000

Proof

$$A_n = \left\{ N\left([n, n+1] \times B([Kf(n+2)]^{-1/d}) \right) \ge 1 \right\}, \ n \ge 0.$$

On A_n ,

$$\sup_{t\in[n,n+2]} Y_0(t) \ge (2\pi e/d)^{-d/2} K f(n+2),$$

that is

$$\sup_{t\in [n,n+2]}\frac{Y_0(t)}{f(t)}>(2\pi e/d)^{-1/2}K.$$

Since A_n occurs infinitely often, and K is arbitrary large, the result follows.

Introduction	Fix t, x	Growth rate
00000	000	0000000 0000000

At which sequence we don't see the superlinear part?

Theorem Let $t_n \uparrow \infty$. Then

$$\lim_{n\to\infty}\frac{Y_0(t_n)}{t_n}=1 \quad a.s.$$

holds, if

$$\sum_{n=1}^{\infty} \frac{t_n^{-2/d} \wedge \Delta t_n}{t_n} < \infty.$$

Introduction	Fix t, x	Growth rate
00000	000	0000000 •000000

Outline

ntroduction Setup Motivation

Fix *t*, *x* Existence Tail

Growth rate

Continuous sampling Spatial growth rate

A.s. properties of SHE with Lévy noise

Introduction 00000 00000	Fix <i>t</i> , <i>x</i> 000 000	Growth rate
00000	000	000000

Fix t, and consider the behavior in x.

Introduction 00000 00000	Fix <i>t</i> , <i>x</i> 000 000	Growth rate

Theorem Almost surely

$$\limsup_{x\to\infty}\frac{\sup_{|y|\leq x}Y(t,y)}{f(x)}=\infty \qquad or \qquad \limsup_{x\to\infty}\frac{\sup_{|y|\leq x}Y(t,y)}{f(x)}=0,$$

according to whether the following integral diverges or converges:

$$\int_1^\infty r^{d-1}\overline{\tau}(f(r))\,\mathrm{d}r,$$

where $\tau(B) = (\text{Leb} \times \lambda) \left(\{ (s, z) : (4\pi s)^{-d/2} z \in B, \ s \leq t \} \right).$

Introduction 00000 00000	Fix <i>t</i> , <i>x</i> 000 000	Growth rate

$$\tau(\boldsymbol{B}) = (\text{Leb} \times \lambda) \left(\{ (\boldsymbol{s}, \boldsymbol{z}) : (4\pi \boldsymbol{s})^{-d/2} \boldsymbol{z} \in \boldsymbol{B}, \ \boldsymbol{s} \leq t \} \right)$$

Lemma

(i) If $m_{2/d}(\lambda) < \infty$, then $\overline{\tau}(r) \sim (4\pi)^{-1} m_{2/d}(\lambda) r^{-2/d}$ as $r \to \infty$. (ii) Assume that $\overline{\lambda}(r) = \ell(r) r^{-\alpha}$ for $\alpha \in [0, \frac{2}{d}]$, and further assume $\int_{1}^{\infty} \ell(u) u^{-1} du = \infty$ if $\alpha = \frac{2}{d}$. Then as $r \to \infty$

$$\overline{\tau}(r) \sim \begin{cases} \frac{2tD^{-\alpha}}{2-d\alpha}\ell(r)r^{-\alpha} & \text{if } \alpha < \frac{2}{d}, \\ \frac{1}{2\pi d}L(r)r^{-2/d} & \text{if } \alpha = \frac{2}{d}. \end{cases}$$

Introduction	Fix t, x	Growth rate
00000	000 000	0000000 0000000

Special case

$$f(r) = r^p$$

$$\limsup_{x\to\infty} \frac{\sup_{|y|\leq x} Y(t,y)}{x^p} = \infty \qquad \text{or } 0,$$

0000 00000 000	Growth rate

Gaussian case (Khoshnevisan, Kim, Xiao 2017):

$$\limsup_{|x|\to\infty}\frac{Y(t,x)}{(\log|x|)^{1/2}} = \left(\frac{2t}{\pi}\right)^{1/4}$$

Introduction 00000 00000	Fix <i>t</i> , <i>x</i> 000 000	Growth rate ○○○○○○○○

References

- Chong, C. and Kevei, P. The almost-sure asymptotic behavior of the solution to the stochastic heat equation with Lévy noise. AoP, 2020.
- Chong, C. and Kevei, P. Extremes of the stochastic heat equation with additive Lévy noise. EJP, 2022.
- Chong, C. and Kevei, P. A landscape of peaks: the intermittency islands of the stochastic heat equation with Lévy noise. AoP, 2023.
- Khoshnevisan, D. Analysis of Stochastic Partial Differential Equations, AMS, 2014