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Introduction Fix t , x Growth rate Parabolic Anderson model

Setup

Heat equation - deterministic case

∂tY (t , x) = ∆Y (t , x) + h(t , x), (t , x) ∈ (0,∞)× Rd ,

Y (0, ·) = f

∆ Laplace operator, h external heating/cooling

Solution:

Y (t , x) =

∫
Rd

g(t , x−y)f (y)dy+

∫ t

0

∫
Rd

g(t−s, x−y)h(s, y)dyds,

where
g(t , x) =

1
(4πt)d/2 e−

|x|2
4t .

A.s. properties of SHE with Lévy noise University of Szeged



Introduction Fix t , x Growth rate Parabolic Anderson model

Setup

Heat equation - deterministic case

∂tY (t , x) = ∆Y (t , x) + h(t , x), (t , x) ∈ (0,∞)× Rd ,

Y (0, ·) = f

∆ Laplace operator, h external heating/cooling
Solution:

Y (t , x) =

∫
Rd

g(t , x−y)f (y)dy+

∫ t

0

∫
Rd

g(t−s, x−y)h(s, y)dyds,

where
g(t , x) =

1
(4πt)d/2 e−

|x|2
4t .

A.s. properties of SHE with Lévy noise University of Szeged



Introduction Fix t , x Growth rate Parabolic Anderson model

Setup

Stochastic heat equation

∂tY (t , x) = ∆Y (t , x) + ξ(t , x), (t , x) ∈ (0,∞)× R,
Y (0, ·) = f

ξ is a space-time Lévy noise.
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Setup

Consider the heat equation (f ≡ 0)

∂tY (t , x) = ∆Y (t , x) + Λ̇(t , x),

where

Λ(dt , dx) = m dtdx+

∫
(1,∞)

z µ(dt , dx , dz)+

∫
(0,1]

z (µ−ν)(dt , dx , dz),

µ Poisson random measure on (0,∞)× Rd × (0,∞), intensity
ν(dt , dx , dz) = dt dx λ(dz). Solution:

Y (t , x) =

∫ t

0

∫
Rd

g(t − s, x − y)Λ(ds, dy) =
∑
τi≤t

g(t − τi , x − ηi)ζi .

g(t , x) =
1

(4πt)d/2 e−
|x|2
4t
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Setup

Gaussian noise

ξ space-time white noise - d = 1
Khoshnevisan, Kim, Xiao, Conus, Foondun, Joseph, . . ., 2010-
Khoshnevisan, Analyis of Stochastic Partial Differential
Equations, 2014, AMS
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Motivation

Moments

E[Y (t , x)] =

∫ t

0

∫
Rd

g(t − s, x − y) dy ds

=

∫ t

0
1 ds = t , (t , x) ∈ [0,∞)× Rd .

VarY (t , x) =

{
1

4
√

2π

√
t , for d = 1,

∞, otherwise.
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Motivation

Proposition
Let tn be a sequence increasing to infinity. Then

lim
n→∞

Y0(tn)

tn
= 1 a.s.

holds, if for some ε > 0{∑∞
n=1 tε−9/4

n <∞, for d = 1,∑∞
n=1 tε−(1+2/d)

n <∞, for d ≥ 2.

In any dimension Y0(n)/n→ 1 a.s.
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Motivation

It turns out that
lim sup

t→∞

Y0(t)
t

=∞ a.s.
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Existence

Y (t , x) =

∫ t

0

∫
Rd

g(t − s, x − y)Λ(ds, dy) =
∑
τi≤t

g(t − τi , x − ηi)ζi .

g(t , x) =
1

(4πt)d/2 e−
|x|2
4t

η(B) = ν
(
{(s, y , z) : s ≤ t , g(s, y)z ∈ B}

)
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Existence

Theorem
Y (t , x) exists iff

∫
(1,∞)

(log z)d/2 λ(dz) <∞,


∫
(0,1] z

2 λ(dz) <∞ d = 1,∫
(0,1] z

2| log z|λ(dz) <∞ d = 2,∫
(0,1] z

1+2/d λ(dz) <∞ d ≥ 3.

η is a Lévy measure and

E[eiθY (t ,x)] = exp

{
iθA +

∫
(0,∞)

(
eiθu − 1− iθu1(u ≤ 1)

)
η(du)

}

Application of Rajput & Rosinski 1989
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Tail

η(B) = ν
(
{(s, y , z) : s ≤ t , g(s, y)z ∈ B}

)
, ν = Leb× λ

Lemma
(i) If m1+2/d (λ) <∞

η(r) ∼ r−1−2/d dd/2

2π(d + 2)d/2+1 m1+2/d (λ), r →∞.

(ii) If λ(r) = `(r)r−α for α ∈ (0,1 + 2
d ],

η(r) ∼

`(r)r−α D1+2/d−α

2dπαd/2(1+ 2
d−α)

if α < 1 + 2
d ,

L(r)r−1−2/d (2dπ(1 + 2
d )d/2)−1 if α = 1 + 2

d ,

where L(r) =
∫ r

1 `(u)u−1 du, D = (4πt)d/2.
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Tail

Lemma
(iii) If λ(x) = `(x), then

η(r) ∼ L0(r)
D1+2/d

4πΓ(d
2 + 1)(1 + 2

d )
,

where
L0(r) :=

∫ ∞
1

`(ry)y−1(log y)d/2−1 dy

is slowly varying and L0(r)/`(r)→∞ as r →∞.
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Tail

Y (t) = supτi≤t g(t − τi , ηi)ζi

Theorem
(i) η is subexponential.
(ii) As r →∞,

P(Y (t , x) > r) ∼ P(Y (t) > r) ∼ η(r).

(iii) For α ∈ [0,1 + 2
d ), η ∈ RV−α iff λ ∈ RV−α.

Embrechts, Goldie, Veraverbeke (’79), Pakes (’04)
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Continuous sampling

Simplification

Assume that λ = δ1, Λ = N standard Poisson point process.
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Continuous sampling

Theorem
Let f : [0,∞)→ [0,∞) be a nondecreasing function. If∫ ∞

1

1
f (t)

dt =∞,

then
lim sup

t→∞

Y0(t)
f (t)

=∞ a.s.

Conversely, if the integral above is finite then

lim sup
t→∞

Y0(t)
f (t)

= 0 a.s.

Furthermore, lim inft→∞ Y0(t)/t = 1 a.s.

A.s. properties of SHE with Lévy noise University of Szeged



Introduction Fix t , x Growth rate Parabolic Anderson model

Continuous sampling

Remarks

lim sup
t→∞

Y0(t)
t

= lim sup
t→∞

Y0(t)
t log(t)

=∞, a.s.

but
lim sup

t→∞

Y0(t)
t(log(t))1.1 = 0 a.s.
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Continuous sampling

Gaussian case

Solution is locally a fractional Brownian motion with Hurst index
1/4. (Lei, Nualart 2009)

Theorem
Suppose that Λ̇ is a Gaussian space–time white noise in one
spatial dimension. Then, a.s.

lim sup
t→∞

Y0(t)
(2t/π)1/4

√
log log t

= − lim inf
t→∞

Y0(t)
(2t/π)1/4

√
log log t

= 1.

In particular, the SLLN holds: limt→∞
Y0(t)

t = 0 a.s.
Follows from Watanabe (1970).
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Continuous sampling

Theorem
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1

1
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Continuous sampling

Proof I

For x ∈ Rd , g(t , x) is increasing on [0, |x |2/(2d)], decreasing
on [|x |2/(2d),∞), and its maximum is

g(|x |2/(2d), x) =

(
d

2πe

)d/2

|x |−d .

Jump at x causes a peak of size |x |−d .
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Continuous sampling

Proof I

Assume first
∫∞

1 1/f (t)dt =∞. Let K > 0 be fix large.

An =
{

N
(

[n,n + 1]× B([Kf (n + 2)]−1/d )
)
≥ 1

}
, n ≥ 0.

Since N is a homogeneous Poisson process, we have

P(An) = 1− e−vd/[Kf (n+2)] ∼ vd

Kf (n + 2)
,

and thus
∑∞

n=1 P(An) =∞. An’s are independent, by
Borel–Cantelli An occurs infinitely many times.
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Continuous sampling

Proof I

An =
{

N
(

[n,n + 1]× B([Kf (n + 2)]−1/d )
)
≥ 1

}
, n ≥ 0.

On An,
sup

t∈[n,n+2]
Y0(t) ≥ (2πe/d)−d/2Kf (n + 2),

that is
sup

t∈[n,n+2]

Y0(t)
f (t)

> (2πe/d)−1/2K .

Since An occurs infinitely often, and K is arbitrary large, the
result follows.
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Continuous sampling

Proof II

Now assume
∫∞

1 1/f (t)dt <∞. Let K > 0 be fix large.

Let us
fix t ∈ [n,n + 1]. Introduce the events (recent close jumps)

An =
{

N([n,n + 1]× B([K/f (n)]1/d ) ≥ 1
}

Bn =
{

N([n,n + 1]× B([K/f (n)]1/d , [(K log n)/n]1/d )) ≥ 2
}

Cn =
{

N([n,n + 1]× B([(K log n)/n]1/d ,1) ≥ 6 log n
}

Almost surely only finitely many of these events occur.
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Discrete sampling
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Discrete sampling

At which sequence we don’t see the superlinear part?

Theorem
Let tn ↑ ∞. Then

lim
n→∞

Y0(tn)

tn
= 1 a.s.

holds, if
∞∑

n=1

t−2/d
n ∧∆tn

tn
<∞.

A.s. properties of SHE with Lévy noise University of Szeged
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Discrete sampling

Special case tn = np

If tn = np for some p > d/(d + 2), we have

lim
n→∞

Y0(tn)

tn
= 1 a.s.,

while for 0 < p ≤ d/(d + 2), we have

lim sup
n→∞

Y0(tn)

tn
=∞, lim inf

n→∞

Y0(tn)

tn
= 1 a.s.
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Spatial growth rate

Fix t , and consider the behavior in x .
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Spatial growth rate

Theorem
Almost surely

lim sup
x→∞

sup|y |≤x Y (t , y)

f (x)
=∞ or lim sup

x→∞

sup|y |≤x Y (t , y)

f (x)
= 0,

according to whether the following integral diverges or
converges: ∫ ∞

1
rd−1τ(f (r)) dr ,

where τ(B) = (Leb× λ)
(
{(s, z) : (4πs)−d/2z ∈ B, s ≤ t}

)
.

A.s. properties of SHE with Lévy noise University of Szeged
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Spatial growth rate

τ(B) = (Leb× λ)
(
{(s, z) : (4πs)−d/2z ∈ B, s ≤ t}

)
Lemma
(i) If m2/d (λ) <∞, then τ(r) ∼ (4π)−1m2/d (λ)r−2/d as r →∞.
(ii) Assume that λ(r) = `(r)r−α for α ∈ [0, 2

d ], and further
assume

∫∞
1 `(u)u−1 du =∞ if α = 2

d . Then as r →∞

τ(r) ∼

{
2tD−α
2−dα `(r)r−α if α < 2

d ,
1

2πd L(r)r−2/d if α = 2
d .
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Spatial growth rate

Special case

f (r) = rp

lim sup
x→∞

sup|y |≤x Y (t , y)

xp =∞ or 0,

I if m2/d (λ) <∞: p ≤ d2/2 or p > d2/2
I if λ(r) = r−α, α ∈ (0,2/d): p ≤ d/α or p > d/α.
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Spatial growth rate

Gaussian case (Khoshnevisan, Kim, Xiao 2017):

lim sup
|x |→∞

Y (t , x)

(log |x |)1/2 =

(
2t
π

)1/4

A.s. properties of SHE with Lévy noise University of Szeged
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Existence

∂tY (t , x) = ∆Y (t , x) + Y (t , x)Λ̇(t , x), (t , x) ∈ (0,∞)× Rd ,

Y (0, ·) ≡ 1,

Solution:

Y (t , x) = 1 +

∫ t

0

∫
Rd

g(t − s, x − y)Y (s, y)Λ(ds, dy)
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Existence

Existence

Y (t , x) = 1 +

∫ t

0

∫
Rd

g(t − s, x − y)Y (s, y)Λ(ds, dy)

Berger & Chong & Lacoin 2022: Solution exists if

∫
(1,∞)

(log z)d/2λ(dz) <∞ and
∫
(0,1) z2λ(dz) <∞, d = 1, (same as additive)∫
(0,1) z2| log z|λ(dz) <∞, d = 2, (same as additive)∫
(0,1) z1+2/d | log z|λ(dz) <∞, d ≥ 3, (log stronger than additive)
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Growth
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Growth

Gaussian case

Conus & Khoshnevisan 2012, Khoshnevisan & Kim & Xiao
2017

lim sup
|x |→∞

Y (t , x)

(log |x |)1/2 =

(
4t
π

) 1
4

additive,

lim sup
|x |→∞

log Y (t , x)

(log |x |)2/3 =

(
9t
32

) 1
3

multiplicative
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Growth

Assume λ(x) = x−α, x > 1, λ((0,1)) = 0.

Theorem
Suppose α > 2

d . Let f be nondecreasing. Then for both additive
and multiplicative noise

lim sup
x→∞

sup|y |≤x Y (t , y)

f (x)
=∞ or 0,

according to whether the integral∫ ∞
1

xd−1f (x)−
2
d dx

diverges or converges.
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Growth

Theorem
Suppose α < 2

d .
I additive noise:

lim sup
x→∞

sup|y |≤x Y (t , y)

f (x)
=∞ or 0,

depending on whether the following integral diverges or
converges: ∫ ∞

1
xd−1f (x)−α dx .
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Growth

Theorem
I multiplicative noise: there are 0 < L∗ ≤ L∗ <∞ such that

for all L > L∗,

lim sup
x→∞

sup|y |≤x Y (t , y)

xd/αeL(log x)1/(1+θα)
= 0 a.s.,

while for all L < L∗,

lim sup
x→∞

sup|y |≤x Y (t , y)

xd/αeL(log x)1/(1+θα)
=∞ a.s.

where θα = 1− d
2 (α− 1).
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Theorem
I If α > 2

d , in the additive case almost surely

lim sup
x→∞

supy∈Zd ,|y |≤x Y (t , y)

f (x)
=∞ or 0,

according to whether∫ ∞
1

xd−1f (x)−[(1+2/d)∧α] dx .

diverges or converges.
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Introduction Fix t , x Growth rate Parabolic Anderson model

Growth

Theorem
I If α ∈ ( 2

d ,1 + 2
d ) in the multiplicative case there are

0 < M∗ ≤ M∗ <∞ such that for all M > M∗,

lim sup
x→∞

supy∈Zd ,|y |≤x Y (t , y)

xd/αeM(log x)1/(1+θα)
= 0 a.s.,

while for M < M∗,

lim sup
x→∞

supy∈Zd ,|y |≤x Y (t , y)

xd/αeM(log x)1/(1+θα)
=∞ a.s.
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Introduction Fix t , x Growth rate Parabolic Anderson model

Growth

Theorem
I If α ≥ 1 + 2

d in the multiplicative case there are
0 < M∗ ≤ M∗ <∞ such that for M > M∗,

lim sup
x→∞

supy∈Zd ,|y |≤x Y (t , y)

xd2/(2+d)eM(log x)(log log log x)/ log log x
= 0 a.s.

while for M < M∗,

lim sup
x→∞

supy∈Zd ,|y |≤x Y (t , y)

xd2/(2+d)eM(log x)(log log log x)/ log log x
=∞ a.s.
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Introduction Fix t , x Growth rate Parabolic Anderson model

Growth

Theorem
I If α < 2

d , then in both cases supy∈Zd ,|y |≤x Y (t , y) has the
same asymptotic as supy∈Rd ,|y |≤x Y (t , y)
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