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Abstract. In this paper we study the scalar delay differential equation

ẋ(t) = −ax(t) + bf(x(t− τ)) with feedback function f(ξ) = 1
2

(|ξ+ 1| − |ξ− 1|)
and with real parameters a > 0, τ > 0 and b 6= 0, which can model a single

neuron or a group of synchronized neurons. We give necessary and sufficient

conditions for existence and uniqueness of periodic orbits with prescribed os-
cillation frequencies. We also investigate the period of the slowly oscillating

periodic solution as a function of the delay. Based on the obtained results we

state an analogous theorem concerning existence and uniqueness of periodic
orbits of a certain type of system of delay differential equations. The proofs

are based among others on theory of monotone systems and discrete Lyapunov

functionals.

1. Introduction. Consider the following delay differential equation

ẋ(t) = −ax(t) + bf(x(t− τ)), (1)

where a > 0, τ > 0, b 6= 0 and the feedback function is defined by

f(ξ) =
1

2
(|ξ + 1| − |ξ − 1|) =


−1 if ξ ≤ −1,

ξ if − 1 < ξ < 1,

1 if 1 ≤ ξ.

These hypotheses are assumed throughout the paper. When b > 0 (b < 0), the
feedback is said to be positive (negative). We also investigate the unidirectional
ring of delay differential equations of the following form

ẋ0(t) = −ax0(t) + bf(x1(t)),

... (2)

ẋn−1(t) = −axn−1(t) + bf(xn(t)),

ẋn(t) = −axn(t) + δbf(x0(t− 1)),
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where a > 0, b > 0, n ≥ 1, δ ∈ {−1, 1} and f is the same as in equation (1). The
feedback is positive / negative if δ = 1/− 1, respectively.

These equations are often applied in models of neural networks, especially in
cellular neural networks (CNN). In (1) x represents the electric potential of a self-
excited neuron or the average potential of a group of synchronized neurons and
time delay appears due to finite conduction velocities or synaptic transmission and
due to finite switching speed of amplifiers in CNNs. System (2) is a model of a
unidirectional ring of interconnecting neurons. In neural systems, periodic solutions
are of great importance. For a general overview of neural networks we refer the
reader to [16]. From the papers of Cao, Krisztin and Walther [1, 8, 9, 11] and
from the monograph of Krisztin, Walther and Wu [12] we get a very detailed and
clear picture of the periodic orbits of equation (1) in the case when f is a smooth
feedback function satisfying some convexity properties. The results in [1, 8, 9, 11]
and [12] use smoothness of f and the assumption that f ′(ξ) 6= 0 for all ξ ∈ R.

The purpose of this present paper is to give necessary and sufficient conditions for
existence and uniqueness of periodic orbits of (1) and (2) with prescribed oscillation
frequencies when the feedback function is the above defined piecewise linear func-
tion. The global attractor of equation (1) is described by Krisztin, Walther and Wu
when the feedback function is from a special class of sigmoid functions. In this case,
existence and uniqueness of periodic orbits in certain oscillation frequency regions
is also known. It seems reasonable to approximate our piecewise linear feedback
function with functions from the aforementioned class, but the problem is that the
global attractor is only upper semicontinuous, hence this approach cannot provide
uniqueness results on periodic orbits of (1). Another technical difficulty is that our
feedback function f is neither smooth, nor strictly monotone, therefore the solu-
tion operator is neither differentiable everywhere nor injective. For this reason the
Poincaré-Bendixson-type theorem of Mallet-Paret and Sell [14] cannot be applied
directly in this case.

Győri and Hartung [6] showed that if 0 < b < a and τ = 1, then the trivial
solution is globally attractive and they conjectured that every solution of (1) is
convergent for any choice of parameters a > 0 and b > 0. Vas [15] disproved their
conjecture by showing that there exists b0 = b0(a) > a such that if b ≥ b0, then
there exists a slowly oscillating periodic solution of the equation. Let us note here
that their equations were somewhat more general than (1) and now we only pay
attention to what they said about our case. However, it remained an open problem
whether periodic solutions exist if a ≤ b < b0. As a special case of Proposition 3.7
it turns out that the answer is no. We have to emphasize here that this does not
prove the Győri-Hartung conjecture for (1) with parameters satisfying b ∈ [a, b0),
since we do not have a Poincaré-Bendixson-type theorem. Therefore it remains still
a challenging problem to prove (or disprove) a Poincaré-Bendixson-type theorem
for equation (1) or the conjecture of Győri and Hartung in this parameter region.

The positive and the negative feedback cases can be treated similarly both in
equation (1) and in system (2), thus we are going to focus on the positive feedback
case. The difference only occurs in concrete values of the bifurcation points and of
the discrete Lyapunov functional which is going to be defined in the next section.
In our main theorems (Theorem 4.3 and Theorem 5.1) we summarize the results
for both negative and positive feedback.
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2. Preliminaries. Let R and N denote the set of reals and positive integers, re-
spectively. Cτ := C([−τ, 0],R) denotes the set of real-valued functions with domain
[−τ, 0]. For a simple closed curve c : [s0, s1]→ R2, int(c), ext(c) and |c| denote the
interior, exterior and the trace of c, respectively.

For our purposes, consideration of the following linear delay differential equation
is also essential

ẋ(t) = −ax(t) + bx(t− τ), (3)

where the same assumptions are made about a, b and τ .
The natural phase space for (1) and (3) is Cτ equipped with the maximum norm.

We say that a continuous function x : [t0−τ,∞)→ R is a solution of equation (1) or
(3) if it is differentiable on (t0,∞) and it satisfies (1) or (3), respectively. Similarly,
x : R → R is a solution of (1) or (3) if it is differentiable and satisfies everywhere
(1) or (3), respectively. If x(·) is a real function on some interval I with t, t−τ ∈ I,
then we let xt ∈ Cτ be defined by

xt(θ) = x(t+ θ) for all θ ∈ [−τ, 0].

From the method of steps, it is clear that every ϕ ∈ Cτ uniquely determines a
solution xϕ : [−τ,∞)→ R of equation (1) and a solution yϕ : [−τ,∞)→ R of equa-
tion (3) such that xϕ0 = yϕ0 = ϕ. Now we are going to define a discrete Lyapunov
functional developed by Mallet-Paret and Sell [13].

V +
τ : Cτ \ {0} → {0, 2, 4, . . . ,∞}, V −τ : Cτ \ {0} → {1, 3, 5, . . . ,∞},

V +
τ (ϕ) =

{
sc(ϕ) if sc(ϕ) is even or infinite,

sc(ϕ) + 1 if sc(ϕ) is odd,

V −τ (ϕ) =

{
sc(ϕ) if sc(ϕ) is odd or infinite,

sc(ϕ) + 1 if sc(ϕ) is even,

where the sign change functional sc : Cτ \ {0} → N ∪ {0} is defined as follows:

sc(ϕ) = sup{k ∈ N : There is a strictly increasing finite sequence {si}k0 ⊂ [−τ, 0]

with ϕ(si−1)ϕ(si) < 0 for all i ∈ {1, 2, . . . , k}} ≤ ∞.
By definition, let sup ∅ = 0. According to [13] the following proposition holds.

Proposition 2.1. Let x : [t0 − τ,∞) → R be a solution of equation (1) or (3).
Let V denote V +

τ in case of positive feedback and V −τ in the negative feedback case.
Then the following statement hold.

(i) V (xt) is a nonincreasing function of t > t0 for as long as xt ∈ Cτ is not the
zero function.

(ii) If t1 ≥ t0 + 3τ is such that xt1 ∈ Cτ is not the zero element and x(t1) =
x(t1 − τ) = 0 then V (xt1) < V (xt0) or else V (xt1) =∞.

(iii) If x : R → R is a periodic solution of equation (1) or (3), then t 7→ V (xt) is
constant and finite for all t ∈ R.

According to the last statement, if x is a periodic solution of equation (1) or (3),
then we may omit subscript t and write e.g. V +

τ (x) = 2 instead of V +
τ (xt) = 2 for

all t ∈ R. From the method of steps it is obvious that if x : [t0 − τ,∞) → R is a
solution of equation (1) or (3) and xt0 6= 0 ∈ Cτ , then xt 6= 0 for all t > t0. Let

τ+
k =

2kπ − arccosab√
b2 − a2

and τ−k =
(2k − 1)π − arccos a|b|√

b2 − a2
.
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The following proposition can be obtained by consideration of the characteristic
equation and from classical results on linear functional differential equations [7].

Proposition 2.2.
(i) If b > 0, then x is a nonconstant periodic solution of (3) if and only if τ = τ+

k

for some k ∈ N and there exists ζk ∈ ((2k − 1)π/τ, 2kπ/τ) and A > 0, d > 0 such
that x(t) = A cos(ζkt+ d). In this case V +

τ (x) = 2k follows.
(ii) If b < 0, then x is a nonconstant periodic solution of (3) if and only if τ = τ−k
for some k ∈ N and there exists ζk ∈ ((2k − 2)π/τ, (2k − 1)π/τ) and A > 0, d > 0
such that x(t) = A cos(ζkt+ d). In this case V −τ (x) = 2k − 1 follows.

3. Periodic orbits, nonexistence and uniqueness results. First of all we note
that if |b| < a, then according to Gopalsamy and He [5], the trivial solution 0 is
globally asymptotically stable regardless of the value of τ . This remains true if
0 < b = a, according to [15], hence there cannot exist any nonconstant periodic
solution of equation (1) in these cases. It is easy to see that there exists no periodic
solution of (1) when 0 > b = −a, either. Thus from this point we shall restrict our
attention only to the case when a < |b| holds.

Proposition 3.1. If x : [t0 − τ,∞)→ R is a solution of (1) for which there exists

t1 ∈ [t0,∞) such that x(t1) = 0 then x(t) ∈ (− |b|a ,
|b|
a ) for all t ≥ t1.

Proof. First note that −ax(t)− |b| ≤ ẋ(t) = −ax(t) + bf(x(t− τ)) ≤ −ax(t) + |b|.
Now, let u±(t) be the unique solutions of the following initial value problems, re-
spectively

ẏ(t) = −ay(t)± |b|,
y(t1) = 0.

This yields u−(t) ≤ x(t) ≤ u+(t) for all t ≥ t1. By simple calculation we obtain

u−(t) =
|b|
a
ea(t1−t) − |b|

a
> −|b|

a

and

u+(t) = −|b|
a
ea(t1−t) +

|b|
a
<
|b|
a

for all t > t1, which proves our claim.

Proposition 3.2. If x : R→ R is a nonconstant periodic solution of (1), then for
all t0 ∈ R, x has a sign change on the half-line (t0,∞).

Proof. We consider the positive and negative feedback cases separately.
1. If the feedback is negative, then, by way of contradiction, let us assume that x

is a nonconstant periodic solution of (1) and there exists t0 ∈ R such that x(t0) > 0
and x(t) ≥ 0 for all t ≥ t0 (the other case is similar). Now, ẋ(t) ≤ −ax(t) holds for
all t ≥ t0 + τ and 0 ≤ x(t) ≤ x(t0)e−a(t−t0) follows for all t ≥ t0 + τ which is in
contradiction with the periodicity of x.

2. If the feedback is positive, then let us assume that x is a periodic solution
of equation (1) with minimal period Tx > 0 and that t0 is such that x(t) ≥ 0 for
t ≥ t0. Then from periodicity of x we get that x(t) ≥ 0 for all t ∈ R. The continuity
of x guarantees that there exists tmin ∈ [0, Tx] such that

x(tmin) = min
t∈[0,Tx]

x(t).
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If x(tmin) ≥ 1, then (1) can be written in the form

ẋ(t) = −ax(t) + b for all t ∈ R,

but this equation has no periodic solution, so x(tmin) ≥ 1 cannot occur. Equation
(1) and the definition of tmin yield

0 = ẋ(tmin) = −ax(tmin) + bf(x(tmin − τ)). (4)

Now, if x(tmin) < 1, then from a < b we get x(tmin) < b
a , from which we obtain

b > bf(x(tmin − τ)). Thus bf(x(tmin − τ)) = bx(tmin − τ) and from equation (4)
one obtains

x(tmin − τ) =
a

b
x(tmin).

This can only happen when x(tmin− τ) = x(tmin) = 0, which contradicts to Propo-
sition 2.1.

Definition 3.3. For a periodic C1 function x : [0, Tx) → R with period Tx, let X
denote the D-trajectory of x defined by X : [0, Tx)→ R2, t 7→ (x(t), ẋ(t)).

Proposition 3.4. Let x : R→ R be a periodic solution of equation (1) or (3) with
minimal period Tx > 0, and let X denote the D-trajectory of the solution. Then the
following statements hold.

(i) X is a simple closed curve and 0 ∈ int(X).
(ii) Monotonicity: There exist t0 ∈ R and t1 ∈ (t0, t0 + Tx) such that 0 < ẋ(t) for

all t ∈ (t0, t1), x(R) = [x(t0), x(t1)] and ẋ(t) < 0 for all t ∈ (t1, t0 + Tx).
(iii) Special symmetry: x

(
t+ Tx

2

)
= −x(t) for all t ∈ R.

(iv) If the feedback is positive, then there exists k ∈ N such that V +
τ (x) = 2k.

(v) If the feedback is negative, then there exists k ∈ N such that V −τ (x) = 2k − 1.

Proof. For nonconstant periodic solutions of (3), these statements are straightfor-
ward consequences of Proposition 2.2.

In the case when x is a nonconstant periodic solution of (1), statement (iii) is
proved in [10]. They also proved a slightly weaker statement than (ii), namely that
there exist t0 ∈ R and t1 ∈ (t0, t0 + Tx) such that 0 ≤ ẋ(t) for all t ∈ (t0, t1),
x(R) = [x(t0), x(t1)] and ẋ(t) ≤ 0 for all t ∈ (t1, t0 + Tx). Assertions (iv) and (v)
are consequences of Proposition 2.1 and 3.2. It is now clear that in order to prove
statement (i) and the strict monotonicity part of (ii), it is sufficient to prove the
following proposition.

Proposition 3.5. Let x : R→ R be a periodic solution of (1) with minimal period
Tx > 0. If t0 ∈ R is such that ẋ(t0) = 0 then ẍ(t0) exists and ẍ(t0) 6= 0.

Proof. Since 0 = ẋ(t0) = −ax(t0) + bf(x(t0 − τ)), Proposition 3.1 yields

|b|
a
> x(t0) =

b

a
f(x(t0 − τ)) > −|b|

a

from which we obtain |x(t0 − τ)| < 1 and thus by using the equation above we
obtain x(t0 − τ) = a

bx(t0). From continuity of x it also follows that there exists
ε > 0 such that for any t with |t− t0| < ε equation

ẋ(t) = −ax(t) + bx(t− τ)

holds. Hence ẍ(t0) exists and

ẍ(t0) = −aẋ(t0) + bẋ(t0 − τ) = bẋ(t0 − τ).
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Now, assume to the contrary that ẍ(t0) = 0. From the equations above we obtain
that ẋ(t0 − τ) = 0 and x(t0 − τ) = a

bx(t0). Now, recall that part (ii) of Proposition
3.4 is proved for the case when we do not ask for strict monotonicity. Using this,
statement (iii) of Proposition 3.4, x(t0 − τ) = a

bx(t0) and |b| > a we get that x
cannot have an extremum point in t0 − τ . Now, from |x(t0 − τ)| < 1 it follows that
ẍ(t0 − τ) exists and is equal to 0.

It follows by induction that for all n ∈ N, equations x(t0 − nτ) = (ab )nx(t0) and
ẋ(t0 − nτ) = 0 hold. By periodicity of x it follows that ∀n ∈ N : ∃tn ∈ [0, Tx]
such that x(tn) = x(t0 − nτ). Let {nj , j ∈ N} such that for some t∗ ∈ [0, Tx] :
limj→∞ tnj

= t∗. By continuity of x it follows that x(t∗) = limj→∞ x(tnj
) =

limj→∞ (ab )njx(t0) = 0 and ẋ(t∗) = limj→∞ ẋ(tnj
) = limj→∞ ẋ(t0 − njτ) = 0,

too, which is a contradiction to Proposition 2.1. This contradiction completes our
proof.

Remark 3.6. Győri and Hartung [6] proved that in case of 0 < b < a and τ = 1,
all solutions of equation (1) tend to an equilibrium point. Six years later, Vas [15]

showed that if b0 = b0(a) is defined by the equation
√
b0

2 − a2 +arccos a
b0

= 2π and

b ≥ b0, then there exists a periodic solution of (1) in (V +
1 )−1(2). It remained an

open problem whether there exists a periodic function in the case of a < b < b0. As a
corollary of the following proposition we obtain that there exists no periodic solution
in this case. We note that the following techniques apply to the case of negative
feedback, too. Similarly, in Proposition 3.8 and 3.9, we restrict our attention only
to the case of positive feedback, but in 4.3 we also summarize the results for both
cases.

Proposition 3.7. Suppose that a, b, τ > 0 and k ∈ N are fixed in a way that
τ
√
b2 − a2 + arccos ab < 2kπ. Then there exists no periodic solution x of (1) for

which V +
τ (x) = 2k.

Proof. The proof is based on the Cao-Krisztin-Walther technique [1, 11]. As in
[11], the proof is divided into two parts. The first part almost coincides with the
corresponding part of the aforementioned proof, but for the sake of completeness,
the argument is repeated here. The difficulties induced by non-strict monotonicity
and not everywhere differentiability of f appear mainly in the second part of the
proof.

Assume to the contrary that x : R → R is a periodic solution of (1) satisfying
V +
τ (x) = 2k and let X denote the D-trajectory of x. Furthermore let

α = α(a, b) =
2kπ − arccos ab√

b2 − a2
> τ. (5)

By Proposition 2.2 we obtain that there exists a periodic function y : R→ R which
satisfies the following delayed differential equation:

ẏ(t) = −ay(t) + by(t− α). (6)

Moreover, if y(·) is any fixed nonconstant periodic solution of (6), then V +
α (y) = 2k.

Since equation (6) is linear, for any γ > 0, γy(·) is also a nonconstant periodic
solution of (6) and V +

α (γy) = 2k. There exists a unique γ > 0 so that, denoting the
D-trajectory of z = γy by Z, we have |Z| ⊂ |X| ∪ ext(X) and |Z| ∩ |X| 6= ∅. Let
Tz be the minimal period of z. Using |Z| ∩ |X| 6= ∅, we may assume X(0) = Z(0)
without loss of generality, i.e.,

x(0) = z(0) and ẋ(0) = ż(0).
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Using the continuity of x, z, ẋ and ż we may assume that x(0) is maximal in the
following sense:

x(0) = max{x(t) : t ∈ R, X(t) ∈ |Z| and ẋ(t) ≥ 0}. (7)

Proposition 3.4 implies that all zeros of x and z are simple and the distances
between two consecutive zeros of x and z are Tx/2 and Tz/2, respectively. This fact
combined with V +

τ (x) = V +
α (z) = 2k yields(

k − 1

2

)
Tx ≤ τ ≤ kTx and

(
k − 1

2

)
Tz ≤ α ≤ kTz.

Using statement (ii) of Proposition 2.1 we infer(
k − 1

2

)
Tx < τ < kTx and

(
k − 1

2

)
Tz < α < kTz. (8)

Now, we distinguish two cases.
Case 1: ẋ(0) = ż(0) = 0.
We may assume that x(0) = z(0) = d > 0. Since properties (ii) and (iii) of

Proposition 3.4 hold for x and z, we obtain that

d = max
t∈R

x(t) = max
t∈R

z(t), −d = min
t∈R

x(t) = min
t∈R

z(t),

ẋ(t) > 0 for − Tx
2
< t < 0, ż(t) > 0 for − Tz

2
< t < 0,

x(−Tx/2) = −d, ẋ(−Tx/2) = 0, z(−Tz/2) = −d, ż(−Tz/2) = 0.

Let T ∗ = min{Tx, Tz}.
Claim: z(s) ≤ x(s) for −T ∗/2 ≤ s ≤ 0. Proof of the claim: Let x−1 and z−1

denote the inverses of the functions

[−Tx/2, 0] 3 t 7→ x(t) ∈ R and [−Tz/2, 0] 3 t 7→ z(t) ∈ R,
respectively. Then the domain of x−1 and z−1 is [−d, d]. Define the following two
functions:

φx : [−d, d] 3 u 7→ ẋ(x−1(u)) ∈ R and φz : [−d, d] 3 u 7→ ż(z−1(u)) ∈ R.
The arcs

Ωx = {X(t) : t ∈ [−Tx/2, 0]} and Ωz = {Z(t) : t ∈ [−Tz/2, 0]} ,
coincide with the graphs

{(u, φx(u)) : u ∈ [−d, d]} and {(u, φz(u)) : u ∈ [−d, d]},
respectively. From the special symmetry of x and z we obtain

|X| = Ωx ∪ (−Ωx) and |Z| = Ωz ∪ (−Ωz).

Hence

int(X) = {(u, v) : u ∈ (−d, d), −φx(−u) < v < φx(u)} .
From |Z| ⊂ |X| ∪ ext(X) we conclude

φx(u) ≤ φz(u) for − d ≤ u ≤ d.
The functions x and z satisfy

ẋ(t) = φx(x(t)) for all t ∈ [−Tx/2, 0]

and

ż(t) = φz(z(t)) for all t ∈ [−Tz/2, 0].
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For −Tz/2 < s1 < s2 < 0 the last equation and the inequality ż(t) > 0 for
−Tz/2 < t < 0 combined yield∫ z(s2)

z(s1)

du

φz(u)
=

∫ s2

s1

ż(t)

φz(z(t))
dt = s2 − s1.

Also, ∫ x(s2)

x(s1)

du

φz(u)
= s2 − s1 for − Tx

2
< s1 < s2 < 0.

The continuity of z and x at 0 yields∫ d

z(s)

du

φz(u)
= −s for − Tz

2
< s ≤ 0

and ∫ d

x(s)

du

φx(u)
= −s for − Tx

2
< s ≤ 0.

We obtain immediately that for −T ∗/2 < s ≤ 0∫ d

z(s)

du

φz(u)
=

∫ d

x(s)

du

φx(u)

holds and using 0 < φx(u) ≤ φz(u) on (−d, d) we infer

z(s) ≤ x(s) for − T ∗

2
< s ≤ 0.

Using continuity we complete the proof of the claim.
If Tz > Tx then from the claim above and from x(−Tx/2) = −d we obtain

z(−Tx/2) ≤ x(−Tx/2) = −d. This is impossible since −Tz/2 < −Tx/2 < 0,
z(−Tz/2) = −d and ż(t) > 0 for −Tz/2 < t < 0. So

Tz ≤ Tx.
Combining this with α > τ and (8) we get(

k − 1

2

)
Tz ≤

(
k − 1

2

)
Tx < τ < α < kTz ≤ kTx (9)

and hence

− kTz < −α < −τ < −
(
k − 1

2

)
Tz. (10)

Using ż(t) > 0 for −Tz/2 < t < 0, the periodicity and the special symmetry of z we
conclude that

ż(t) < 0 for − kTz < t < −
(
k − 1

2

)
Tz.

This inequality combined with (10) implies

z(−α) > z(−τ).

Again, from the periodicity and the special symmetry of z we find

z(−τ) = z(−τ + kTz) = −z
(
−τ +

(
k − 1

2

)
Tz

)
.

From (10) we obtain

−Tz
2
< −τ +

(
k − 1

2

)
Tz < 0.
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These inequalities, our claim above and T ∗ = Tz combined yield

z

(
−τ +

(
k − 1

2

)
Tz

)
≤ x

(
−τ +

(
k − 1

2

)
Tz

)
.

Using that x is increasing on [−Tx/2, 0] and the consequence

−Tx
2
≤ −Tz

2
< −τ +

(
k − 1

2

)
Tz ≤ −τ +

(
k − 1

2

)
Tx < 0

of the inequalities Tz ≤ Tx and (9), we infer

x

(
−τ +

(
k − 1

2

)
Tz

)
≤ x

(
−τ +

(
k − 1

2

)
Tx

)
.

By periodicity and the special symmetry of x,

x

(
−τ +

(
k − 1

2

)
Tx

)
= −x(−τ + kTx) = −x(−τ)

holds. Consequently,

z(−α) > z(−τ) =− z
(
−τ +

(
k − 1

2

)
Tz

)
≥ −x

(
−τ +

(
k − 1

2

)
Tz

)
≥− x

(
−τ +

(
k − 1

2

)
Tx

)
= x(−τ).

(11)

Using equations (1) and (6) and ẋ(0) = ż(0) = 0, x(0) = z(0) = d > 0 we obtain

z(−α) > 0, x(−τ) > 0

and

bz(−α) = bf(x(−τ)) ≤ bx(−τ).

Hence we obtain z(−α) ≤ x(−τ), a contradiction to (11).
Case 2: ż(0) = ẋ(0) 6= 0.
Let β = x(0) = z(0). Then there exists ε > 0 such that ẋ(t) > 0 and ż(t) > 0 for

all t ∈ (−ε, ε). Then there exists a δ > 0 so that there are inverses

x−1 : (β − δ, β + δ)→ R, z−1 : (β − δ, β + δ)→ R

of restrictions of x and z to open intervals in (−ε, ε), respectively. Define the
following maps

ηx : (β − δ, β + δ) 3 u 7→ ẋ(x−1(u)) ∈ R,
ηz : (β − δ, β + δ) 3 u 7→ ż(z−1(u)) ∈ R.

Since z is a solution of (6) it follows that z is C2-smooth and we have

ηz
′(u) = z̈(z−1(u))

d

du
z−1(u) =

z̈(z−1(u))

ż(z−1(u))
for all u ∈ (β − δ, β + δ).

In particular,

ηz
′(β) =

z̈(0)

ż(0)
. (12)

Now, according to the value of x(−τ) we distinguish two further cases:
Case 2.1: |x(−τ)| 6= 1.
If x(−τ) > 1 or x(−τ) < −1 then by the continuity of x we may choose ε and δ

so that x(t − τ) > 1 or x(t − τ) < −1 for all t ∈ (−ε, ε), respectively. Similarly if
|x(−τ)| < 1 then let ε and δ be such that |x(t− τ)| < 1 for all t ∈ (−ε, ε).
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Therefore from (1) it follows that in both cases ẍ(x−1(u)) exists and

η′x(u) =
ẍ(x−1(u))

ẋ(x−1(u))
for all u ∈ (β − δ, β + δ).

In particular we have

η′x(β) =
ẍ(0)

ẋ(0)
. (13)

The sets

{(u, ηx(u)) : u ∈ (β − δ, β + δ)} , {(u, ηz(u)) : u ∈ (β − δ, β + δ)}

are graph representations of pieces of |X| and |Z|, respectively. Since |Z| ⊂ |X| ∪
ext(X) and (β, ηx(β)) = (β, ηz(β)), we infer

η′x(β) = η′z(β).

This fact combined with ẋ(0) = ż(0) and with equations (12) and (13) implies that

ẍ(0) = z̈(0).

Differentiation of equations (1) and (6) at t ∈ (−ε, ε) yields

ẍ(t) = −aẋ(t) + bf ′(x(t− τ))ẋ(t− τ), (14)

z̈(t) = −aż(t) + bż(t− α).

From ẍ(0) = z̈(0) and ẋ(0) = ż(0) we obtain

ż(−α) = f ′(x(−τ))ẋ(−τ). (15)

Using equations (1) and (6) and that X(0) = Z(0) we obtain

f(x(−τ)) = z(−α). (16)

Assume |x(−τ)| > 1. From equations (15) and (16) we have ż(−α) = 0 and
|z(−α)| = 1. Using the strict monotone property of z and the special symmetry of
x and z we infer that

max
t∈(0,Tz ]

z(t) = |z(−α)| = 1 < |x(−τ)| ≤ max
t∈(0,Tx]

x(t),

which contradicts to |Z| ⊂ |X| ∪ ext(X).
Thus we may assume that |x(−τ)| < 1. Equation (15) yields ż(−α) = ẋ(−τ) and

equation (16) yields z(−α) = x(−τ), hence X(−τ) = Z(−α). From (8) we obtain
that

X(−τ) ∈ {(x(t), ẋ(t)) : t ∈ (0, Tx/2)}.
The choice of the point X(0) = Z(0) and the strict monotone property of x guar-
antee that ẋ(−τ) = ż(−α) < 0 holds.

We claim that from X(0) = Z(0), x(−τ) = z(−α), ẋ(−τ) = ż(−α) < 0 and
|Z| ⊂ |X| ∪ ext(X), it follows that there exists t∗ ∈ (0, ε) such that

x(t∗) < z(t∗), x(t∗ − τ) ≥ z(t∗ − α) and ẋ(t∗) < ż(t∗).

Proof of the claim: for an arbitrary fixed δ0 ∈ (0, δ) let tx(δ0) = x−1(β+ δ0) and
tz(δ0) = z−1(β+ δ0), where x−1 and z−1 are restricted to the interval (β− δ, β+ δ)
(recall that δ has been chosen earlier in the proof). A similar argument as in Case
1 shows that ∫ β+δ0

β

du

ηx(u)
= tx(δ0) and

∫ β+δ0

β

du

ηz(u)
= tz(δ0).
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The choice of the intersection point X(0) = Z(0) implies

ηx(u) < ηz(u) for all u ∈ (β, β + δ0).

Combining this with the above equations we obtain tx(δ0) > tz(δ0) and hence the
strict monotone property of x yields x(tz(δ0)) < x(tx(δ0)) = δ0 = z(tz(δ0)). Let
t0 = tz(δ/2). Since δ0 was arbitrary and tz is continuous, hence x(t) < z(t) holds for
all t ∈ (0, t0). Now, define u, v : R→ R by u(t) = −x(t− τ) and v(t) = −z(t− α),
respectively. Using that f is odd we obtain that u and v are periodic solutions
of (1) and (6), respectively and u(0) = v(0), u̇(0) = v̇(0) > 0. According to
the argument above there exists t1 < t0 such that u(t) ≤ v(t) for all t ∈ (0, t1)
or equivalently x(t − τ) ≥ z(t − α). Note that here we cannot guarantee strict
inequality, because u(0) = v(0) may not possess the maximal property analogous
to (7). To complete the proof of our claim let us assume to the contrary that
for all s ∈ (0, t1) : ẋ(s) ≥ ż(s). This implies that for all t ∈ (0, t1) we have

x(t) = x(0) +
∫ t

0
ẋ(s)ds ≥ z(0) +

∫ t
0
ż(s)ds = z(t) which is a contradiction. So the

claim is proved, thus we may choose t∗ ∈ (0, ε) so that

x(t∗) < z(t∗), x(t∗ − τ) ≥ z(t∗ − α) and ẋ(t∗) < ż(t∗).

On the other hand, considering equations (1) and (6) at time t∗ yields

ẋ(t∗) = −ax(t∗) + bf(x(t∗ − τ))

= −ax(t∗) + bx(t∗ − τ)

> −az(t∗) + bz(t∗ − α)

= ż(t∗),

which contradicts to ẋ(t∗) < ż(t∗), therefore Case 2.1 cannot occur.
Case 2.2: |x(−τ)| = 1.
First note that from equations (1) and (6) and from assumption X(0) = Z(0) we

obtain

x(−τ) = z(−α) = 1 or x(−τ) = z(−α) = −1. (17)

Now, recall that from (5) and Proposition 2.2 it follows that equation

ẏ(t) = −ay(t) + by(t− τ) (18)

has no periodic solution u(·) for which V +
τ (u) = 2k. This implies that if x is a

periodic solution of equation (1) with V +
τ (x) = 2k then

max
t∈R

x(t) > 1 and min
t∈R

x(t) < −1, (19)

since otherwise x would be a periodic solution of (18) satisfying V +
τ (x) = 2k which

is impossible. Now, (19) and the monotone property of x imply that ε and δ (defined
earlier in the proof) can be chosen in a way that

ẋ(t− τ) > 0 for all t ∈ (−ε, ε) or ẋ(t− τ) < 0 for all t ∈ (−ε, ε). (20)

Thus it follows that η′x(u) = ẍ(x−1(u))
ẋ(x−1(u)) exists for all u ∈ (β − δ, β + δ) \ {0}. This

combined with (14) shows that

lim
u1β

ẍ(x−1(u))

ẋ(x−1(u))
and lim

u%β

ẍ(x−1(u))

ẋ(x−1(u))

exist, moreover

lim
u1β

ẍ(x−1(u))

ẋ(x−1(u))
= lim

t10

ẍ(t)

ẋ(t)
=

limt10 ẍ(t)

ẋ(0)
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and

lim
u%β

ẍ(x−1(u))

ẋ(x−1(u))
= lim
t↘0

ẍ(t)

ẋ(t)
=

limt%0 ẍ(t)

ẋ(0)
.

Let

η′x(β−) =
limt10 ẍ(t)

ẋ(0)
and η′x(β+) =

limt%0 ẍ(t)

ẋ(0)
.

From |Z| ∈ |X| ∪ ext(X) we obtain that

η′x(β−) ≥ η′z(β) ≥ η′x(β+),

which is equivalent to

lim
t10

ẍ(t) ≥ z̈(0) ≥ lim
t%0

ẍ(t).

Using (14) it can be written in the following form

lim
t10

[−aẋ(t) + bf ′(x(t− τ))ẋ(t− τ)] ≥ −aż(0) + bż(−α)

≥ lim
t%0

[−aẋ(t) + bf ′(x(t− τ))ẋ(t− τ)].

Since ẋ is continuous, thus it is equivalent to the following

ẋ(−τ) · lim
t10

f ′(x(t− τ)) ≥ ż(−α) ≥ ẋ(−τ) · lim
t%0

f ′(x(t− τ)).

Now (20) guarantees that the inequality above can be written in one of the following
forms

0 ≥ ż(−α) ≥ ẋ(−τ) or else 0 ≤ ż(−α) ≤ ẋ(−τ).

This combined with (17) and |Z| ⊂ |X| ∪ ext(X) infers

X(−τ) = Z(−α).

The choice of X(0) infers that ẋ(−τ) cannot be positive or zero. If
ẋ(−τ) = ż(−α) < 0 then the same argument as in Case 2.1 shows that there
must exist t∗ ∈ (0, ε) such that

x(t∗) < z(t∗), x(t∗ − τ) ≥ z(t∗ − α) and ẋ(t∗) < ż(t∗)

hold. Note that equation (20) combined with ẋ(−τ) < 0, |x(−τ)| = 1 and t∗ ∈ (0, ε)
yields x(t∗− τ) < 1 from which we particularly get bx(t∗− τ) ≤ bf(x(t∗− τ)). This
combined with the above inequalities yields

ẋ(t∗) = −ax(t∗) + bf(x(t∗ − τ))

≥ −ax(t∗) + bx(t∗ − τ)

> −az(t∗) + bz(t∗ − α)

= ż(t∗),

a contradiction to ẋ(t∗) < ż(t∗) which means that |x(−τ)| cannot be 1, either and
thus our proof is now complete!

Proposition 3.8. Let a, b, τ > 0 be fixed in a way that τ
√
b2 − a2 + arccos ab 6= 2lπ

for any l ∈ N. Then for every k ∈ N, equation (1) has at most one periodic orbit
in (V +

τ )−1(2k).
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Proof. Suppose to the contrary that x1 and x2 are both nonconstant periodic solu-
tions of (1) with minimal periods T1 and T2, respectively such that
{x1t : t ∈ [0, T1]} 6= {x2t : t ∈ [0, T2]} and V +

τ (x1) = V +
τ (x2) = 2k hold. We

claim that for the corresponding D-trajectories |X1| 6= |X2| holds. If this is not the
case, then as in the first part of the previous proof, we get T1 ≤ T2 and T1 ≥ T2, also,
moreover x1(s) = x2(s) holds for all s ∈ [−T1/2, 0] = [−T2/2, 0]. Now, from the spe-
cial symmetry of periodic solutions one gets a contradiction, which proves the claim.
Using statement (i) of Proposition 3.4, we may assume that |X2|∩ int(X1) 6= ∅, fur-
thermore there exists a unique constant γ > 1 for which γ|X2| ⊂ ext(X1) ∪ |X1|
and γ|X2|∩ |X1| 6= ∅. Now let x := x1 and y := γx2. By simple calculation we infer
that y is a periodic solution of the following delay differential equation:

ẏ(t) = −ay(t) + bγf(y(t− τ)/γ), (21)

with minimal period Ty = T2. It is clear that x is a periodic solution of (1) with
minimal period Tx = T1 and V +

τ (x) = V +
τ (y) = 2k. From this point, the process of

the proof is rather similar to the proof of Proposition 3.7 and hence some parts of
it are omitted.

Without loss of generality we may assume that X(0) = Y (0) and

x(0) = max{x(t) : t ∈ R, X(t) ∈ |Y | and ẋ(t) > 0}, (22)

where X and Y are the corresponding D-trajectories. We have again two cases.
Case 1: ẋ(0) = ẏ(0) = 0.
The same argument as in the proof of Proposition 3.7 shows that Ty ≤ Tx and

y(s) ≤ x(s) for all s ∈ [−Ty/2, 0]. In addition, now we claim that the first inequality
is strict, that is

Ty < Tx.

To prove this, let us assume that Ty ≥ Tx, which implies Ty = Tx and y(s) ≤ x(s)
for all s ∈ [−Tx/2, 0] also. Using the observations in the proof of Proposition 3.7
and the same notations we obtain

s−Tx/2 =

∫ x(s)

−d

1

φx(u)
du ≥

∫ x(s)

−d

1

φy(u)
du ≥

∫ y(s)

−d

1

φy(u)
du = s−Ty/2 = s−Tx/2,

for all s ∈ [−Tx/2, 0], which shows that both the above inequalities are equations
and in particular we get

x(s) = y(s) for all s ∈ R.
This also implies ẋ(s) = ẏ(s) for all s ∈ R. Note that our assumption that

@l ∈ N : τ
√
b2 − a2 + arccos ab = 2lπ together with Proposition 2.2 yields that

x is not a solution of the linearized equation

ż(t) = −az(t) + bz(t− τ).

In other words, there exists s0 ∈ R such that 1 < x(s0). By continuity we may
choose s0 in a way that 1 < x(s0) < γ. Now, we have

ẋ(s0 + τ) = −ax(s0 + τ) + bf(x(s0)) = −ax(s0 + τ) + b

and

ẏ(s0 + τ) = −ay(s0 + τ) + γbf(y(s0)/γ) = −ax(s0 + τ) + γbf(x(s0)/γ)

= −ax(s0 + τ) + bx(s0) > −ax(s0 + τ) + b,

which contradicts to ẋ(s0 + τ) = ẏ(s0 + τ). This contradiction shows that Ty < Tx.



14 ÁBEL GARAB

From Proposition 3.1 and equation (1) for t = 0 we infer |f(x(−τ))| < 1 which
implies |x(−τ)| < 1. Now, from ẋ(0) = ẏ(0) and equations (1) and (21) we get

γbf(y(−τ)/γ) = bf(x(−τ)) = bx(−τ)

or equivalently:

f(y(−τ)/γ) = x(−τ)/γ < 1,

which leads to x(−τ) = y(−τ). On the other hand the same argument as in the
proof of Proposition 3.7 shows that

−kTx < −kTy < −τ < −
(
k − 1

2

)
Tx < −

(
k − 1

2

)
Ty,

thus by using the monotone property and the special symmetry of x and y we infer

y(−τ) = −y (−τ + Ty/2) ≥ −x (−τ + Ty/2) > −x (−τ + Tx/2) = x(−τ),

which is a contradiction. This proves that Case 1 cannot occur.
Case 2: ẋ(0) = ẏ(0) 6= 0.
Let β = x(0) = y(0). As in the proof of the previous proposition we may assume

that ε > 0 and δ > 0 are such that ẋ(t), ẏ(t) > 0 for all t ∈ (−ε, ε) and

x−1 : (β − δ, β + δ)→ R, y−1 : (β − δ, β + δ)→ R

are inverses of restrictions of x and y to open intervals in (−ε, ε), respectively. Just
as before, we define the following two maps:

ηx : (β − δ, β + δ) 3 u 7→ ẋ(x−1(u)) ∈ R,

ηy : (β − δ, β + δ) 3 u 7→ ẏ(y−1(u)) ∈ R.
Note that from X(0) = Y (0) and equations (1) and (21)

f(x(−τ)) = γf(y(−τ)/γ)

follows. Hence |f(y(−τ)/γ)| ≤ 1/γ < 1 and by continuity of y and f we obtain that
ε may be chosen in a way that |f(y(t− τ)/γ)| < 1 for all t ∈ (−ε, ε). Thus on this
interval, equation (21) can be written in the form

ẏ(t) = −ay(t) + by(t− τ). (23)

Hence y is C2-smooth on the interval (−ε, ε) and just as in the preceding proof we
find that

η′y(β) =
ÿ(0)

ẏ(0)
.

The rest of Case 2 can be dealt with repetition of the proof of Proposition 3.7
with substituting τ in place of α and y in place of z, everywhere.

Proposition 3.9. Let a, b, τ > 0 and k ∈ N be such that τ
√
b2 − a2 + arccos ab =

2kπ. Then there exists no periodic solution x of equation (1) for which
maxt∈R x(t) > 1 and V +

τ (x) = 2k.

Proof. Let us assume that the claim is not true and x is a periodic solution of
equation (1) satisfying maxt∈R x(t) > 1 and V +

τ (x) = 2k. As in the proof of
Proposition 3.7, y can be chosen to be a periodic solution of the linearized equation
(23), such that V +

τ (y) = 2k and for the corresponding D-trajectories |Y | ⊂ |X| ∪
ext(X) and |Y | ∩ |X| 6= ∅ hold. The two cases are treated separately precisely
as in the former propositions. In the first case, using the same notations, the
same argument yields Ty ≤ Tx. As assumed earlier, there exists s0 ∈ R such that
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x(s0) > 1. Thus a rather similar argument to the one in the proof of Proposition
3.8 can be applied to obtain Ty < Tx and then we get the contradiction similarly.

In the second case of the proof of Proposition 3.7, condition α > τ was used
nowhere, hence the contradiction can be obtained in this case, too.

4. Periodic orbits, existence results and the period function. Let a, b be
fixed and b > a > 0 hold and let

τ∗ = τ∗(a, b) =
2π − arccos ab√

b2 − a2
.

We know from [15] and from Proposition 3.8 that if τ ≥ τ∗, then equation (1) has
a nonconstant periodic solution x, for which V +

τ (x) = 2 holds and that this solution
is unique up to translation of time (and up to scalar multiplication of the solution
when τ = τ∗). We denote the minimal period of that unique periodic solution by
T (τ). Function T : [τ∗,∞) → R, τ 7→ T (τ) is regarded as the period function of
equation (1). The following proposition roughly says that “the bigger the delay, the
bigger the a D-trajectory is”. This proposition as well as Theorems 4.2 and 5.1 are
already proved for the case when the feedback is of smooth, sigmoid-type [4]. The
proofs are based on the uniqueness of periodic solutions which is guaranteed here
by Proposition 3.8.

Proposition 4.1. Let a > 0, b 6= 0 and τ∗ ≤ τ1 < τ2 be fixed and let xi be a
periodic solution of equation (1) with delay τ = τi, i ∈ {1, 2}. In addition, let ε
denote the sign of b and Xi denote the D-trajectory of xi. If V ετ1(x1) = V ετ2(x2),
then

|X2| ⊂ ext(X1) ∪ |X1| and |X2| ∩ ext(X1) 6= ∅.

Proof. Again, we only treat the case when the feedback is positive. By way of con-
tradiction, let us suppose that x1 and x2 satisfy the assumptions of the proposition
but the claim is not true. Then, as in the beginning of the proof of Proposition 3.8,
it follows that |X1| 6= |X2|, hence we may assume that |X2| ∩ int(X1) 6= ∅. Then
there exists a unique γ > 1 such that

γ|X2| ⊂ ext(X1) ∪ |X1| and γ|X2| ∩ |X1| 6= ∅
hold. Now, if we define y(t) = γx2(t) for all t ∈ R, then y is a nonconstant periodic
solution of (21) and V +

τ1 (x1) = V +
τ2 (y) > 0 holds. Now, the rest of the argument

is the same as it was in the proof of Proposition 3.8. The only difference is that
we cannot assume that x is not a solution of the linearized equation, but since
τ2 > τ1 ≥ τ∗, thus we may assume that y is not a solution of it and contradiction
is obtained in the same manner.

Theorem 4.2. Let T denote the period function of (1). Let τ1, τ2 ∈ [τ∗,∞),
τ1 < τ2. Then

0 ≤ T (τ2)− T (τ1) < 2(τ2 − τ1).

Proof. The proof presented in [4] works in this case, also and is based on the previous
proposition.

Note that in particular it follows that the period function is continuous. The
following theorem is the main result of the section. Here, we summarize Propositions
3.7-3.9 and their analogues for negative feedback. We also state and prove the
remaining existence results. The theorem gives a complete picture concerning the
number and the oscillation-frequency of the periodic solutions.
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Theorem 4.3. Let k ∈ N, a, τ > 0 and b 6= 0 be fixed and let ν = ν(a, b, τ) =

τ
√
b2 − a2 + arccos a

|b| . The following statements hold.

(i) If the feedback is positive, i.e. b > 0, then equation (1) has a periodic solution
in (V +

τ )−1(2k) if and only if ν ≥ 2kπ holds. If ν > 2kπ, then this periodic
solution is unique, up to translation of time.

(ii) If ν = 2kπ and x is an arbitrary periodic solution of equation (1) in
(V +
τ )−1(2k), then maxt∈R x(t) ≤ 1. If y ∈ (V +

τ )−1(2k) is also a periodic
solution of (1), then there exist A > 0 and d > 0 such that y(t) = Ax(t + d)
for all t ∈ R.

(iii) If the feedback is negative, i.e. b < 0, then equation (1) has a periodic solution
in (V −τ )−1(2k − 1) if and only if ν ≥ (2k − 1)π holds. If ν > (2k − 1)π, then
this periodic solution is unique, up to translation of time.

(iv) If ν = (2k − 1)π and x is an arbitrary periodic solution of equation (1) in
(V −τ )−1(2k−1), then maxt∈R x(t) ≤ 1. If y ∈ (V −τ )−1(2k−1) is also a periodic
solution of (1), then there exist A > 0 and d > 0 such that y(t) = Ax(t + d)
for all t ∈ R.

(v) Nonoscillatory periodic solutions do not exist.

Proof. Only the existence parts are left to prove. There are several ways to prove the
existence of such periodic solutions, see, e.g. Diekmann et al. [3] and the references
therein. We are going to present here a rather elementary proof. Actually, as we
have already mentioned earlier, existence was also proved in (V +

τ )−1(2) by Vas [15].
We shall prove the remaining existence parts using this fact and Theorem 4.2.

1. Let us suppose that b > 0, 2 ≤ k ∈ N and ν(a, b, τ) ≥ 2kπ. We need to prove
that there exists a periodic solution x of equation (1), for which V +

τ (x) = 2k. Let
us consider the following delay differential equation

ẋ(t) = −ax(t) + bf(x(t− γτ)). (24)

Let ω(γ) = T (γτ), where γ ∈ [γ∗,∞) and γ∗ is defined by the following formula

γ∗τ
√
b2 − a2 + arccos

a

b
= 2π. (25)

Now, let us assume that there exists γ0 ∈ [γ∗,∞), such that

τ = γ0τ + (k − 1)T (γ0τ)

holds and that y is the only periodic solution of (24) with γ = γ0 for which
V +
γ0τ (y) = 2. Then we obtain that the following equations hold

ẏ(t) = −ay(t) + bf(y(t− γ0τ)) = −ay(t) + bf(y(t− (γ0τ + (k − 1)T (γ0τ))))

= −ay(t) + bf(y(t− τ)).

From the special symmetry of the solutions we infer V +
τ (y) = 2k, thus it is

sufficient to prove the existence of such a γ0. From Theorem 4.2 it follows that ω is
continuous on its domain, so it is sufficient to find such γ1, γ2 ∈ [γ∗,∞) values that
one of the the following two expression is nonpositive and one is nonnegative

τ − γ1τ − (k − 1)T (γ1τ) and τ − γ2τ − (k − 1)T (γ2τ).

If γ1 ≥ 1, then the first expression is clearly negative. Let us consider the case when
γ2 = γ∗. It is easy to see that

T (γ∗τ) =
2π√
b2 − a2

.
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Now, from this and from formula (25) we infer that the inequality

τ − γ∗τ − (k − 1)T (γ∗τ) ≥ 0

is equivalent to the following

τ ≥
2π − arccos ab√

b2 − a2
+ (k − 1)

2π√
b2 − a2

.

This is equivalent to ν(a, b, τ) ≥ 2kπ, so our claim is proved.
2. If the feedback is negative, i.e. b < 0, then suppose that ν(a, b, τ) ≥ (2k−1)π.

Now, there exists γ∗ > 0 (but not necessarily greater than 1), such that for all
γ ∈ [γ∗,∞), equation

ẋ(t) = −ax(t)− bf(x(t− γτ)) (26)

has a unique periodic solution in (V +
γτ )−1(2). If y is such a solution, we infer the

following

ẏ(t) = −ay(t)− bf(y(t− γτ)) = −ay(t)− bf(y(t− γτ − (k − 1)T (γτ)))

= −ay(t) + bf(y(t− γτ − (k − 3/2)T (γτ))).

We used the special symmetry of y and the oddness of f . Again, from the special
form of the solutions, it is clear that if y is the unique solution of (26) in (V +

γ0τ )−1(2),
where

τ = γ0τ − (k − 3/2)T (γ0τ)

holds, then y is also a periodic solution of equation (1) with negative feedback and
V −τ (y) = 2k−1. If we choose γ1 large enough and γ2 = γ∗, then a similar argument
shows the existence of such a γ0. This completes our proof.

5. A generalization. Let us consider the following system of delay differential
equations:

ẋ0(t) = −ax0(t) + bf(x1(t)),

... (27)

ẋn−1(t) = −axn−1(t) + bf(xn(t)),

ẋn(t) = −axn(t) + δbf(x0(t− 1)),

where a, b > 0, n ∈ N, δ ∈ {−1, 1} and f is the already defined feedback function.
This unidirectional ring-type system was studied in papers [2, 4, 13, 14] and [17]
in the case when f is of smooth, sigmoid-type. We state that the existence and
uniqueness results on periodic solutions proved in [4] and [17] remain true for this
type of feedback, also. The argument presented in [4] is valid in this case, as well,
and the proof is based on Theorem 4.2.

For a system of the form (27) the natural phase space is the Banach space
C(K,R), which is the space of continuous functions from K to R, where
K = [−1, 0] ∪ {1, 2, . . . , n}. We shall use the shorter form C(K). If x is a solu-
tion of (27) on some interval, then we let xt,K ∈ C(K) be defined by

xt,K(θ) =

{
x0(t+ θ) for θ ∈ [−1, 0],

xθ(t) for θ ∈ {1, 2, . . . , n}.

In order to state our theorem, we first need to define the Lyapunov functionals for
this case, also introduced in [13].
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V +
K : C(K) \ {0} → {0, 2, 4, . . . ,∞}, V −K : C(K) \ {0} → {1, 3, 5, . . . ,∞},

V +
K (ϕ) =

{
sc(ϕ,K) if sc(ϕ,K) is even or infinite,

sc(ϕ,K) + 1 if sc(ϕ,K) is odd,

V −K (ϕ) =

{
sc(ϕ,K) if sc(ϕ,K) is odd or infinite,

sc(ϕ,K) + 1 if sc(ϕ,K) is even,

where sc(ϕ,K) denotes the number of sign changes of ϕ on set K.

Theorem 5.1. Let νn = νn(a, b) =
√
b2 − a2 + (n + 1) arccos ab and k ∈ N. The

following statements hold.

(i) If δ = 1 and k ≥ n+1
2 , then system (27) has a periodic solution in (V +

K )−1(2k)
if and only if νn ≥ 2kπ. This solution is unique up to translation of time when
νn > 2kπ. If νn = 2kπ and x, y ∈ (V +

K )−1(2k) are both periodic solutions of
system (27), then maxt∈R x(t) ≤ 1 holds and there exist A > 0 and d > 0 such
that y(t) = Ax(t+ d) for all t ∈ R.

(ii) If δ = 1, k < n+1
2 and νn ≥ 2kπ, then system (27) has a periodic solution in

(V +
K )−1(2k).

(iii) If δ = −1 and k ≥ n+2
2 then system (27) has a periodic solution in

(V −K )−1(2k − 1) if and only if νn ≥ (2k − 1)π. This solution is unique
up to translation of time when νn > (2k − 1)π. If νn = (2k − 1)π and
x, y ∈ (V −K )−1(2k − 1) are both periodic solutions of system (27), then
maxt∈R x(t) ≤ 1 holds and there exist A > 0 and d > 0 such that
y(t) = Ax(t+ d) for all t ∈ R.

(iv) If δ = −1, k < n+2
2 and νn ≥ (2k − 1)π, then system (27) has a periodic

solution in (V −K )−1(2k − 1).

Sketch of proof. The proof is based on Theorem 4.2 and on the fact that if
δ ∈ {−1, 1} is fixed and x : R → Rn+1 is a nonconstant periodic solution of
system (27), then there exists rδ ∈ R such that (x1(t), . . . , xn(t), δx0(t − 1)) =
(x0(t + rδ), . . . , x

n(t + rδ)) holds for all t ∈ R. For details, see [17]. The existence
of such an rδ depends on the fact that if x and y are two nonconstant periodic
solutions of system (27) with distinct orbits, then for all i ∈ {0, . . . , n} the trace of
t 7→ (xi(t), xi+1(t)) and t 7→ (yi(t), yi+1(t)) are disjoint simple closed curves on the
plane, where by xn+1(t) and yn+1(t) we denote x0(t−1) and y0(t−1), respectively.
This is proved for n = 0 in Proposition 2.4 of [10], but their argument also holds
when n ≥ 1. For more details we refer the reader to [4].

We conjecture that the restrictions for k in statements (i) and (iii) are not nec-
essary. Note that if n = 0, then k ≥ (n + 1)/2 holds for all k ∈ N, so in this case
Theorem 5.1 gives back Theorem 4.3. To prove the conjecture, according to [4],
it is sufficient to prove that the period function T of equation (1) is such that the
function defined by [τ∗,∞) 3 τ 7→ T (τ)/τ is monotone nonincreasing. Numerical
simulations suggest that this is true, moreover, with Gabriella Vas, we showed ana-
lytically that there exists τ∗∗ ≥ τ∗ such that T (τ)/τ is monotone nonincreasing on
[τ∗∗,∞).
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