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vfor every k€N. Then, for arbitrary oy, ..., 6,_,€MN it holds

B (8%(G0s +ves Ope); vos 8™ H(Ggs vvvs Gpn)) (k) =
= gmedm (g, .y 0o (n(k div m)+i) =
= Glgkaivm) +1) moar (M ((n(k div.m) +1) div n) + k mod m) = U‘(k)

The identities in the second line of (6) can be verified in the same way Thus,
Sed, ., as required.

For a vanety, to contain free algebras which have m-element and also n-element
free generating sets (m, n€N; msn) is a strong Mal’cev property (71, p. 400),
characterized by the identities (6). Hence we can conclude that the fulfilment of a
Mal’cev condition does not exclude ubiquity. Usmg selective algebras, it is easy to
establish that several other syntactical properties of varieties, e.g. equational com-

‘Pleteness, definability by regular identities, and definability by linear 1dent1t1es are

independent from ubiquity as well
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- SELECTIVE ALGEBRAS AND COMPATIBLE VARIETIES -

BELA CSAKANY

i. introduction -

In this peper, the notion of a selective alcebra is introduced and applied to
characietize bquaﬁonal theories which have rodels over every variciy. Another
characterization was already proposed by Isbell [9]; the use of selective algebras
makes it possible to prove or refute this property for several concrete equanonal
theories., ‘

We shall use the standard termmology of universal algebra [7]. A non-trivial
set or algebra always has at least two elements. The set consisting of the first £ non-
negative integers will be denoted by k.

Let P and M,(p€ P) be arbitrary non-empty sets and & a natural number. We

define a k-ary operatlon fon S= ]] M, in the following way. We consider two

’mappmgs St P—»k and f2 P—»P such that, for all peP, Mf,(p)EM and

M, is non-trivial if M, is non-trivial. Let a, ..., Oy - 1€S Put

(1) : © fogs iees O 1)(17) = O'fl(p)(fz(P))

for every p€P. In words, in order to get the p- conwponent of the result, first we
select the f,(p)™® operand, and then the f,(p)-component of it. Operations f obtained
in this way will be called selective operations. The mappings Jfiand f; will be' referred
to as the first and second selectors of £. We say that (S; F) is a. selective algebra if
each fEF is a selective operation on S. If M,=M for every pcP. (1 e S=M ",
we call (S; F) a regular selective algebra.

Special kinds of selective algebras have been in use for a long time. A selective
algebra (S; F) with P=Kk, f k-ary, and fi(p)=f.(p)=p for each pEP .is a k-
dimensional diagonal algebra (Plonka [13]) which often appears in the study.of free
spectra of varieties (see, e. g. [10]). Diagonal algebras of a given dimension form a
variety in which regulanty in'the above sense means freeness.. Rectangular bands, left
‘and right zero semigroups are examples of diagonal algebras, hence also of selective
algebras. A further example is the k-dimensional die, introduced by Fajtlowicz [4];
such an object is a free k-dimensional diagonal algebra whose structure is enriched
by a further unary selective operation ¢ with ¢,(i)=i—1 (mod k) for every ick.
Regular selective groupoids with two-element P and non-trivial cyclic selectors were
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characterized by Evans [3] by means of identities; a more general result for regular

selective groupoids was obtained by Saade [15]. Regular selective algebras with k-
element P and with all possible selective operations appear at Taylor [16] as members
of the k" power-variety of sets.

Regular selective algebras are a special case of the wreath algebras introduced
and applied to the study of completeness properties of finite algebras by Rosenberg
[14]. Take a selective operation f on M? and a mapping 7 of P into the symmetric
group over M. Define the operation w,, on M? by W 2(Gos oovs Ox)(D)=
=n(p)(f(0y; .., 6x—1)(p)). The operations arising in this way are the wreath oper-
ations; and wreath algebras are the ones with wreath basic operations.

Now we make some observations we will need in the sequel.

Polynomials of selective algebras are selective operations.
Indeed, each projection on a product set §= Il M, is a selective operation

. peP 3 .
having the first selector constant and the second selector the identical map. Further,
if fand g°, ..., g*~1 are n-ary, resp. k-ary, selective operations on S, then, for any
00y +ors 0,—1€S and pcP ‘ :

(2) f(go(a'(), ) o-k—l)a sy gn—l(a.o’ ceey O-k—l))(p) = Gé(P)(fz(p))(ngl(p) (f(p))):

as, in view of (1), both sides are equal to g/1®(q,, ..., 0~ (/2(p)). Note also

Mggl(p)(f@) SM,; thus we see that f(g° ...,g" Y=h is a selective operation

on § with selectors h;: p—g{*®(f,(p)) and h,: p—gfr® (£, (p)).

This consideration also shows that we can attribute a well-determined pair of
selectors to every polynomial symbol 4 of a selective algebra S, which are also selec-
tors of the polynomial induced by & in S.

For a product set S= J] M, the support of S is the set Q= {pc P: [M,|>1}.

P

né

An n-ary selective operation f on S depends essentially on its i™ variable (i€én)

if and only if the image of the support of S under f; contains i. This follows directly from
the definition.

LEMMA. Two selective operations. f and g of the same arity on S are equal iff
their first selectors as well as their second selectors coincide on the support of S.

The easy proof may be omitted. We note only that f(c,, ..., 0,-)(p)=a for
all p€P such that M, ,,={a}, and also that for pc P\Q we have M oy =M,
(because M, S M,). Thus, without loss of generality we may assume that

SHPNQ)=idp\g.

2. Compatibility of varieties

An n-ary operation over an algebra A is 2 homomorphism h: A"—A. For the
algebra A=(4; 0) (i.e., a set) this is the common notion of the operation. Expressing
it in other way, fis an operation over A iff f commutes with all operations of A, i.e.
belongs to the centralizer of A ([1], p. 127; cf. [12], [11]).

B=(4; H) is an algebra over A if every h€H is an operation over A. We
can thus speak of algebras of a given type over A, and of algebras over A which are
models of a given equational theory, i.e. belong to a given variety.
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Following Isbell [9], for two varieties ¥* and #; we say that ¥" is compatible
with #" if there exists an algebra 4€¥" over a nontrivial BeW. For operations
/& therelation f commutes with g is symmetric, hence compatibility of varieties
is symmetric, too. We say that a variety ¥" is ubiguitous if ¥ is compatible with
every variety. Isbell proved ([9], Theorem 1.1) that every variety compatible with
the variety of Boolean algebras is ubiquitous. The next proposition slightly extends
this result, and throws light on the relationship of ubiquity and selective algebras.

PROPOSITION. For a variety ¥ the following are equivalent:
() ¥ is compatible with a variety generated by a primal algebra.
(ID) ¥ contains a nontrivial regular selective algebra.
(IID) ¥ contains a nontrivial selective algebra.
(AV) ¥ is ubiquitous.

PROOF. Our proposition is implied by the following four claims:

CLAM 1. Let a variety " be generated by a primal algebra M. If B is a nontrivial
algebra over an algebra AW, then B is a dense subalgebra of a regular selective
algebra on a power of M. (ASMT? is dense if A|P’=M* for every finite P’CP).

CrLAM 2. If some dense subalgebra of a regular selective algebra S belongs to the
variety ¥; then S belongs to -

Craw 3. If a variety ¥ contains a nontrivial selective algebra then Jor an arbi-
trary nontrivial set M, the variety ¥ contains a regular selective algebra on some power

“of M.

CLAM 4. For an arbitrary algebra K, every selective operation on a power K¥
commutes with every operation of KF.

Indeed, (II) ~(I1I) and (IV) —(I) are obvious; (I)~(II) follows from Claims 1 and
2; and (1)~ ((I1) ~ )(IV) follows from Claims 3 and 4. Hence it remains to prove
the Claims. ’

1. Let B=(4; F) be an algebra over Ac#. As M is primal, A is isomorphib

-to a subdirect power of M. (Concerning primal algebras, consult [7], pp. 177—180,

401-—403.) Hence the maximal congruences of A are exactly those having |M| dis-
tinct congruence classes. We can represent A as a subdirect product of all factoral-
gebras modulo maximal congruences, which is the same as a subdirect product of
copies of M indexed by the set P of all maximal congruences of A. Thus, A is, up to
isomorphism, a subalgebra of M?, and the primality of M implies that 4 is dense.

Consider an n-ary operation fEF, i.e. a homomorphism S A"~A. Let ncP
and, for (ttg, ..., %,—1), (%5, ..., @y 1YEA”, put (%, ..., Oy 1)~ 0, <oy )4 ) if the zi-
components of f(c, ..., %,—1) and f(&g, ..., a,_;) coincide. Then ~ is a maximal
congruence of A". As the algebras in %" may be considered as lattices with additional
operations, the congruences of 4" are factorizable [5]. Thus, ~ =1 AX XXX,
where n’€ P and 7’ is the k™ factor. This shows that the n-component of f(¢, ...,
...» ®,—1) IS a bijective function of the n’-component of o,__,. As fis a homomor-
phism, this function is an automorphism of M, hence identical, because M is primal.
We obtained that f is the restriction to A of a selective operation f” on M? with
S (®=k,; and fo(m)=n" forevery ncP. Hence A is a dense subalgebra of a regu-

17




434 B. CSAKANY

lar selective algebra on M7, as asserted. (Note that this consideration may also be
formulated using the Stone-Hu duality for primal algebra theory [8]). :

2. Let S=(MP; F) be a regular selective algebra, and D a dense subalgebra
of S. We have to prove that the identities of D are satisfied in S, too. This means that
distinct (n-ary) polynomials ki, &’ of S can be distinguished by suitable &y, ..., J,-1€D.
We can suppose that S is non-trivial, hence the support of S is P. Now, by the Lemma,
'hs#h’ on S means that at least one of hy3h; and hy=h is valid. First suppose that
hy2h, and let p€P be such that hy(p)#=h;(p). Take distinct elements m;, m, from
M. As D is dense, there exist 6,8’€D with 6(p)=my, &' (p)=m,. Let & =4,
On,»=0" and choose all the remaining §;€D (i€m; ixhy(p), hi(p)) arbitrarily.

Then
(3) h(60: Teey 5n—1)(p) =nmy #= My = h,(éoﬁ bR ] 57!—1)(17)

Assume h;=h{; then thereis a pcP with hy,(p)=hi(p). As D is dense, there
exists 66D with §(hy(p))=my%my=5(h5(p)). Let 64, =39 and choose the other
;s arbitrarily. Under these assumptions again (3) holds. Thus, 4 is distinct from A’
on D, as stated.

3. Let S=(S; F) be a non-trivial selective algebra. For an arbitrary non-tri-
vial set M we present a regular selective algebra on some power of M which is the
same type as S and satisfies all the identities of S.

S has the form [ M, with non-empty support QS P. Take an operation

pEP
fof S. Restrict £;, /> to O, thus obtaining fy, f;. Let f” be the selective operation on
M2 determined by selectors £, f5. Now, S'=(M?; f’: f€F}) is the regular selec-
tive algebra in question. Indeed, if g and & are polynomial symbols of S, and S
satisfies g=Ah, then, by the Lemma, S’ satisfies g’=h’, where g’, b’ are the corre-
sponding polynomial symbols of S’

4. Let S=(K?; F) be a selective algebra and take an n-ary f€F. We have to
show that f is a homomorphism of (KF)” into K. Let g be an m-ary operation of
K?. Choose m elements from (KP)* arbitrarily: {ub, ..., pi—y) (@=0,...,m—1).
Then _

FUWS, oo D), oy 815 oo TN (D) = 8(Urys - KD (o) =

= (i (a(P))s - K (o(PD) = |

= g(f U, .or BO-1)(D)s woes SR oo N (D)) =

= g(F8, cvor B2y oo SHEY ons ) (D)
‘holds for each p€P, ie. f commutes with g, as required, and the Proposition ‘is
proved. i

3. Applications
The fact that ubiquitous varieties can be characterized by the presence of 'alge'-

bras with a quite transparent structure allows us to decide on several varieties
‘whether they are ubiquitous.

No congruence modular variety is ubiquitous.
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We prove this by showing that there is no non-trivial regular selective algebra
in a congruence modular variety. Let ¥~ be congruence modular. By the Mal’cev type
theorem of Day [2], there exist quaternary polynomial symbols 49, ...,d" (n=1)

" such that for i=0, ..., n—1 the following identities hold in ¥":

(4) ' ) di(x’ Vs Vs JC) =X,

ae(x, y, z, u) = x, :
. di(x, v, v, u) = di+*(x, y, y, u) for i od
©) di(x,x, u, u) = d*+*(x, x, u, u) for i even
ar(x, y, z, u) = wu.

~ Assume that there exists a regular selective algebra S=(M?"; F) in ¥ Set
é(x, N=d(x,y,y,x) (i=0,...,n—1). Then for arbitrary ¢,, ;€S and for every
pEP )
€ (ay, 01) () = 0o(P)-

Applying (1), it follows o,( p)=cre§(p)(e§(p)), and the right side equals oy(ek(p))
if di(p)e{0,3} while it equals a(e5(p)) if di(p)€{l,2}. As we can choose o, and
oy with oo(p)#0;(e5(p)), the second case cannot oceur, i.e., df(p)€{0,3} for each
i and p. This means that no d* depends essentially upon its second and third variables.
Hence, by (5), S satisfies x=u, thus S is trivial, a contradiction.

As a consequence, no varieties of quasigroups, groups, rings, or lattices are

‘ubiquitous. As for semigroups, an easy argument shows that a variety of semigroups

is ubiquitous if and only if it contains a non-trivial rectangular band.
Varieties &, , (with natural numbers m and ») having r-ary operations g° ...,
...,g"1 and me-ary operations A°, ..., h"~! which satisfy for each meaningful i

R(0(Xgs ves Xne)s -oor 8" 2 (Ko +ovs Xnm1)) = X1
(B0 (Xgs ooy Xpp—)s <ovs B2 (X0s vves X—1)) = X

were first studied by Goetz and Ryll-Nardzewski [6]. They have the notable property

(©)

that a free algebra in &7, , with an m-element free generating set has also an n-element -

free generating set. Hence, for m>n, these varieties do not contain non-trivial
finite algebras. Here we prove:
The varieties f,,,, are ubiguitous.

By the Proposition, we have to produce a selective algebra S with operations
g (i=0,...,m—1), k' (i=0, ..., n—1) satisfying (6). Take a non-trivial set M. We
shall define S on the set MN where N={1, 2, ...}. Write i div for the quotient of
the Euclidean division of i by j, and i mod j for the remainder of that. Define g’ and
K by their selectors as follows:

gi(k) = kmodn, gi(k)=m(kdivn)+i,
h{(k) = kmod m, hj(k) = n(kdivm)+j,
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