Varieties of idempotent medial quasigroups
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Quasigroups are algebras with three binary operations -, /, and \, called
multiplication, right, and left division, respectively, which are connected.by the
identities :

¢y xyly = Y\yx = (x[y)y = y(\x) = x.

A quasigroup Q is idempoten if its multiplication is idempotent. Q is called medzal if,
for the multiplication, the identity

@ ' (xp) (uv) = () (yv)

_ holds. These two conditions — separately as well as jointly — were studied by several

authors; see, e.g., STEIN [11] and BeLousov [2], [3]. :

In what follows we apply the results of the preceding paper [7] to characterlze
varieties of idempotent medial quasigroups, especially the variety of all such quasi-
groups and equationally complete varieties of them as well. The considerations we
made are closely related with the recent investigations of MITSCHKE and WERNER [10];
as a matter of fact, the groupoids involved in [10] are equivalent to spec1al idempotent
medial quasigroups.

We will use the conventions of [7] without further references. We Wnte abc
instead of (ab) c; more generally, the absence of parentheses in any product indicates
that multiplication must be performed from left to right even in the case when ex-
ponents occur; e.g., a(bc?)d denotes (a((®o ¢))d. Let P denote the ring of all rational

S %)
xk “(1— )l ?

functions of form —Z————, where f(x)€Z[x] and k%, / are non-negative integers.

Theorem 1. The variety P of all idempotent medial quasigioups is equivalent™

to the variety of all affine modules over P. Any variety R of idempotent medial quasi-

. groups is equivalent to the variety of all aﬁine modules over some homamorphzc image

of P.
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Proof. To prove that £ is equivalent {o & (R) for some commutative ring R,
it is enough to show that £ is regular, idempotent, Abelian and Hamiltonian. Indeed,
in this case # satisfies the conditions of Theorem 2 in [7]. ’

Any variety of quasigroups is regular [6]. As Stein observed [11], in any quasi-
group the idempotency of multiplication implies the idempotency of both divisions;
hence £ is idémpotent. Again by [11], from mediality of multiplication follows the
mediality of divisions, and so each fundamental operation in £ commutes with itself;
in order to prove that £ is Abelian it remains to show that they commute with each
other. Using (1) and (2) we obtain

- xfyeufv = (xfy-ufo)(p)/yv = xulyv,

and similarly we get the other two desired identities.

Let Q<% and consider an arbitrary subquasigroup A of Q. Then the distinct
sets of form 4g={ag|ac A}, where g is a fixed element of Q, furnish a partition of 0.
Indeed, suppose AbNAc= & (b, c€ Q). We have to prove AbC Ac. There exist a;, a,
A such that g;b=a,c. Take an a; from 4; then

. azh = (as/a)b = ((03/ a;) b) (@)= ((as/ al)b) (ab\ayc) = ((a:;/ ay) (al\az)) <5

ie., AbS Ac. Now the mediality implies that this partition is compatible with the
quasigroup operations, showing that 4 is a congruence class in Q. Thus, the Ha-
miltonian property of £ is established. ' ‘

Thus, & is equivalent to o (R) for some R. We have to prove that R is a homo-
morphic image of P. The set R equipped with the ring addition and right multiplica-
tions is a free R-module with the free generator 1. By Lemma 2 in [7], the associated
affine module R* is free in o/ (R) with the free generating set {0, 1}. Let F, denote
the free idempotent medial quasigroup with the same free generating set. Then there
exists a weak isomorphism ¢: F,~R* such that 0p=0, l¢=1. Denote by { the
one-to-one correspondence of the polynomials of F, and R* under this weak iso-
morphism.

Take (-){=(x,x). Then 1=1-1=(x, x")(1, })=x+x', whence x'=1—x. If
(N =(u, u’) then 1=(1/0)0=(lu+0u")x+0(1 —x)=ux, and, by idempotency of the
right division, z’=1—u. If (\){=(v, "), then we get v(1—x)=1, v"=1—v analo-
. gously. Observe that for any f(x)€Z[x], and non-negative integers k, , the ring R
contains the product f(x)u*v!. On the other hand, using the commutativity of R
and the equations ux=v(l—x)=1, an induction (on the number of fundamental
operations occuring in the expression of elements of F, over {0, 1}) shows that
every element of (F,@=)R may be written in the form f(x)u*v". Hence there exists

f(x) - f(x)u"v’), proving the second

a homomorphism of P onto R (namely, ————
x*(1—x)

part of the theorem.
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Now we can'assume that 2 is equivalent to &/ (R,) for some homomorphic
image R, of P. It is clear from the proof of Theorem 3 in [7] that & (R,) is equivalent
to some subvariety of &/ (P). But & (P) itself is equivalent to some variety of idem-
potent medial quasigroups. Indeed, the polynomials '

3 | (x, 1—x), [i l—i], [L l—ﬁ],

x’ x 1—x’

considered as multiplication aﬁd divisions, satisfy (1); further, an induction (on the
arity) shows that all polynomials of any affine module over P may be expressed as
polynomials over (3). Thus, P is also-a homomorphic image of Ry, whence, using

the fact that P is Noetherian, it follows R, =P, qu.e.d.

Corollary 1. There exist countably many varieties of idempotent medial quasi-
groups. ;

Theorem 2. The equationally complete varieties of idempotent medial quasi-
groups coincide up to equivalence with the varieties of affine modules over finite fields
except GF(2).

Proof. In virtue of the remark at the end of [7], the varieties of quasigroups
in question are equivalent to varieties of affine modules over simple quotient rings
of P. Such quotient rings are fields; we prove that they are finite. Observe that P

- is a homomorphic image of the polynomial ring Z[x,, X,, x;], because the last one

is free with the free generating set {x;, X,, X3} in the variety of commutative rings
with unit element. It is known, that any maximal ideal in Z[x;, x,, x;] has a finite
index there (see [4], p. 68.). Hence the same holds for P. Thus, the quotient fields
of P are finite, indeed.

‘On the other hand, any finite field K consisting of at least three elements, is a
homomorphic image of P, because the correspondence 00, 1—+1, x—o (where
o is a multiplicative generator of K) may be extended to a homomorphism of P onto
K. The trivial fact that no polynomials of affine modules over GF(2) may be essen-
tially binary, completes the proof. )

Corollary 2. There exist countably many equationally complete varieties of
idempotent medial quasigroups. :

Theorem 2 enables us to- axiomatize equationally complete varieties of idem-
potent medial quasigroups. Let K be an arbitrary finite field consisting of g(>2)
elements. Take a generating element o of the multiplicative group of K. Let k be
the unique integer between 0 and g—1 for which «*=(1—o)~* holds; let, further-
more, for i=1,...,q—2 the integer ic (0<ioc<g—1) defined by the equation
w?=0'**—g+1. This definition fails for i=—(k+1) (mod (¢—1)) if 2|g and for

-1
:E —[q—2——+k+1] (mod (q—-l)) if 24g, and so the mapping ¢ has a domain con-
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taining ¢—3 numbers; it is one-to-one and its range does not include q—1—k,
but (g—1—k)o exists always unless the domain of ¢ is empty.

Theorem 3. The variety A of idempotent medial quasigroups determined by
the further identities

(6) x[y = xy47%,

A7) Y\x = xpF,
(3) xyix=xy° if 1=i=¢g—2 and ic is defined,
) xyx=y if 1=i=¢g—2 and io is undefined,

is equationally complete and equivalent to o (K).

Proof. Any affine module A over K considered as a quasigroup W1th multi-
plication and divisions

(10) (@ l-d), @ 1-«—1),' (S R B ¢ B

belongs to . Indeed, a routine computation shows that A is idempotent, medial,

and the identities (6)—(9) are satisfied in it; furthermore, the familiar induction

used in this paper, gives that all polynomials of A may be expressed as poly-

nomials over (10). It remains to prove that %~ is equationally complete
Observe first that (6) and (7) implies the 1dent1t1es

69 Xyt = X,
(7 o yxyF = x.

Only (7’) needs a verification. Using several times the identity
an (yx)y = y(xy)

(a consequence of the idempotency and mediality) we get yxy*=y(xy)=y(3\x)=x.

We establish the equational completeness of & by proving that any algebra
A, in A, with a minimal generating set of n elements, is determined uniquely up to
isomorphism. A; consists of a single element. Let A, be generated by the set {x, y}.
We show that 4, consists exactly of the elements

(12) Py Xy XV, oeey XYL

For this aim we show that the product of any two elements from (12) occurs in (12)
(since, in virtue of (6)—(7), divisions in A, can be expressed by multiplication). This
requires some computations which may be surveyed on the following table:

T x xyf2

y * 13y | (15
x * * (16)

x| L% * an
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Here asterisk means that product of the leading members indicating the con-
sidered row and column obviously occurs in (12); the numbers in brackets refer to
the computations what follow:

. (13) : yx s= yxyq—l = yxykyq—l—k (7=’) xyq—l—k- .

Hence also
(14 XY x® = xye ik
follows in the case when fo is undefined.
(15) ‘ () an yxyt © Py pa=i-kee @ XA ik
a . x(ey) 2 x(ep)ahxa 1k £

xyto'xq—l—k—l
R xytxq—l—k =1y
xyq—l—kxq—l—k—2

. by (8) for fo defined,
by (9) for toc undefined and £ = ¢—2,
by (14) in the remainder case.

We can iterate, if it is necessary, the last step of (16) until finally we get an expression
of form y or xy*. The computation of (xy™)(xy) will be divided into three parts
accordmg to the cases ,>1t,, t;=1,(=¢) and #;<f,.

(ti-tpo+t, by (8) for (¢, —t,)0 defined,
470 ()G 2 xyamianys = {xy y (8) for (#;—1;)c define

y - by (9) for (f;—t,)o undefined.
(17) (") (x) = xp*.
. xy(t?_—tl)'+t1 or
a7) )Gy & x (o) 2 { =

Furthermore, the elements (12) are pairwise distinct. Indeed, y=x)y' 0<t<g—1)
implies y=yy? *"*=xp?"'=x by (6), in contrary to the assumption. From the
regularity of £, no other pairs of elements in (12) may equal. Thus we showed that
A, consists of the ¢ distinct elements (12) and its multiplication table is uniquely
defined. '

Suppose, by induction, that A, (z=2) is unique, and let the minimal generating
set of A,y be {x,, X1, ..., X,}. Then [xy, x;] and [x, ..., x,] are isomorphic to A,
and A,, respectively. Clearly, [xg, X;]U[xy, ..., X,] generates A,.;. On the other
hand, [xy, %] Nxy, ..., X,]=x;, since if X€[x,, X;]MN[xy, ..., x,] holds for x#x,,then
[x, x,] = Ay =[x, X;], whence [x, x;]=[x,, x,], i.e., [Xo, X1] E [y, ..., X,], denying the
minimality of {x,, x;, ..., X,}. Hence we can apply Lemma 1 from [7]: A,4;=
2= {xy, X ] XXy, ..., X, ] = A, XA, and so A,.; is unique up to isomorphism.

 Thus, # is equationally complete, ending the proof of the Theorem.
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Corollary 3. Equationally complete varieties of idempotent medial quasigroups
are equivalent to varieties of groupoids.

Remarks 1. The varieties %(n, k) of groupoids, discussed in [10], are also,
in fact, equivalent to varieties of idempotent medial quasigroups. Indeed, as it is shown
there, 9(n, k) is equivalent to &/ (R(n, k)), where R(n, k)=Z[x]/(x"—1, x*+x—1).
Now, for any natural numbers k<un, R(n, k) is a homomorphic image of P under

()
x*(1—x)” .
in R(n, k). Hence 9(n, k) is equivalent to a subvariety of &; i.e., it is equivalent to
some variety &, , of idempotent medial quasigroups. Note that 2, r may be axi-
omatized by the identities x/y=x)""1, y\x=xy"""

2. The solution of Plonka’s problem (Corollary 7 in [10]) can be derived from
the above considerations as well. Let ¢ be the variety of groupoids satisfying the
identities x?=x, x(yx)=y and xyz=zyx. The last identity implies the mediality;
defining x/y by yx and y\x by xy, ¥ becomes a variety of quasigroups, which is
clearly equivalent to 4. By Theorem 1, ¢ is equivalent to &/ (R) for some ring R,

the homomorphism —f(ryr@ et where r=x+(x"—1, x*+x—1)

generated by an element «, such that the operation (¢, 1 —e) of &/ (R) corresponds’

to the multiplication of 4. Then Plonka’s second and third identities, rewritten with
the aid of ¢, give 0?=1—« and a(1 —«)=1, and this implies that R=GF(4); i.e., 4
is equivalent to &/ (GF(4)).

3. The characterization of medial Steiner triple systems (Corollary 8 in [10])
as affine modules over GF(3) is even the special case K=GF(3) of Theorem 3. For
related results, see [1] and [9].

4. Algebras with one ternary operation t whlch commutes with itself and satisfies
the identity

(18) ' (6% ) =106y, ) =1 x,x) =y

were discussed by Aviev [1], who called them S*-algebras. Aliev’s results jointly
with Givant’s characterization of varieties in which all members are free [8] imply
that the variety &* of all S*-algebras is equivalent to «/(GF(2)). This fact can be
deduced also from our considerations as follows. Obviously, &#* is idempotent and
Abelian; further the defining identities involve that the S*-algebras are essentially
flocks with commutative covering groups ([5], p. 40), whence &* is regular and
Hamiltonian. Then Theorem 2 in [7] shows that &* is equivalent to & (R) for some
commutative ring R. Now the routine discussion of the identities (18) furnishes
that R is generated by its unit element, and 1=—1 in R. Hence R=GF(2).
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