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Abstract. It is established that an E-unitary almost factorizable
orthodox semigroup need not be isomorphic to a semidirect prod-
uct of a band by a group, and a necessary and sufficient condition is
given for an E-unitary almost factorizable orthodox semigroup to
be isomorphic to such a semidirect product. Moreover, the struc-
ture of every E-unitary almost factorizable orthodox semigroup is
described by means of bands and groups.
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1. Introduction

Factorizable inverse monoids and almost factorizable inverse semi-
groups play an important role in the theory of inverse semigroups.
These notions and a number of basic results are generalized in [1] for
orthodox semigroups. The aim of this note is to continue these inves-
tigations. It is well known (see e.g. [3]) that an inverse semigroup is
E-unitary and almost factorizable if and only if it is isomorphic to a
semidirect product of a semilattice by a group. In this paper we give an
example to show that semidirect products of bands by groups form a
proper subclass of E-unitary almost factorizable orthodox semigroups,
and provide a necessary and sufficient condition for an E-unitary al-
most factorizable orthodox semigroup to be isomorphic to a semidirect
product of a band by a group. Moreover, we generalize the semidi-
rect product construction, and apply it to describe the structure of
E-unitary almost factorizable orthodox semigroups by means of bands
and groups.

Research partially supported by the Hungarian National Foundation for Scien-
tific Research grants no. T48809 and K60148, and by the National Development
Agency grant no. TAMOP-4.2.1/B-09/1/KONV-2010-0005.

1
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2. Preliminaries

In this section we recall the notions and summarize the results of
[1] needed in the paper. For the undefined notions and notation the
reader is referred to [2] and [3].

The band of idempotents of an orthodox semigroup S is denoted by
E(S), and the least inverse semigroup congruence and the least group
congruence by γS and σS, respectively. If it causes no confusion we
simply write γ and σ.

An orthodox semigroup S is termed E-unitary if E(S) is a unitary
subset in S, or equivalently, if the identity class of the least group
congruence of S, called also the kernel of this congruence, is E(S). A
congruence θ on an orthodox semigroup is said to be E-unitary if the
factor semigroup S/θ is E-unitary.

Let S be an orthodox semigroup and denote the translational hull
of S, as usual, by Ω(S). Recall that the left translations are written as
left maps and the right translations as right maps. Obviously Ω(S) is a
monoid with identity (idS, idS) where idS, or simply id, is the identity
map of S. For brevity, denote the group of units of Ω(S) by Σ(S).
It is well known that νS : S → Ω(S), s 7→ (λs, ρs) is an embedding.
The orthodox semigroup S is said to be almost factorizable if, for every
s ∈ S, there exist e ∈ E(S) and (λ, ρ) ∈ Σ(S) such that s = eρ. Notice
that this notion is self dual, since, for every s ∈ S, there exist e ∈ E(S)
and (λ, ρ) ∈ Σ(S) with s = eρ if and only if there exist e′ ∈ E(S) and
(λ′, ρ′) ∈ Σ(S) such that s = λ′e′.

If B is a band and G is a group then we say that G acts on B if a
homomorphism of G into AutdB, the dual of the group of automor-
phisms of B, is given. The elements of AutdB are considered to be
left maps. For a band B and a group G acting on B, we define the
semidirect product of B by G such that its underlying set is B × G
and the multiplication is defined in the following manner: for every
(a, g), (b, h) ∈ B ×G,

(a, g)(b, h) = (a · gb, gh).

The semigroup obtained in this way is denoted by B oG. Notice that
each semidirect product of a band by a group is an E-unitary almost
factorizable orthodox semigroup. The almost factorizable orthodox
semigroups are characterized as follows:

Result 2.1. ([1]) An orthodox semigroup is almost factorizable if and
only if it is an idempotent separating homomorphic image of a semidi-
rect product of a band by a group. �
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Let B be a band and G a group acting on B. It is well known that
the second projection

(2.1) π : B oG→ G, (a, g) 7→ g

is a surjective homomorphism which induces the least group congru-
ence on B oG. Since D is the least semilattice congruence on B, each
automorphism respects D, and so each automorphism α of B deter-
mines an automorphism α on the factor semilattice B/D by the rule
Daα = Daα (a ∈ B). Thus the action of G on B determines an action
of G on B/D where gDa = Dga for every a ∈ B and g ∈ G. The
semidirect products B o G and (B/D) o G defined by these actions
closely relate to each other: the mapping

(2.2) δ : B oG→ (B/D) oG, (a, g) 7→ (Da, g)

is a surjective homomorphism which induces the least inverse semigroup
congruence on B o G. Denoting the second projection of (B/D) o G
by π, we cleary have π = δπ.

Let N CG. Obviously, the action of G on B defines an action of N
on B. We say that N acts identically on B if na = a for every a ∈ B
and n ∈ N . If this is the case, then ga = ha for any a ∈ B and g, h ∈ G
with Ng = Nh. Therefore an action of G/N on B is defined by the
rule Nga = ga, and the mapping

(2.3) ζN : B oG→ B o (G/N), (a, g) 7→ (a,Ng)

is a surjective homomorphism. If N acts identically on B/D then the
respective surjective homomorphism (B/D) o G → (B/D) o (G/N),
(Da, g) 7→ (Da, Ng) is denoted by ζN .

The proof of Result 2.1 (see [1, Theorem 5]) provides, for any almost
factorizable orthodox semigroup S, a semidirect product E(S) o Σ(S)
of E(S) by Σ(S) such that the mapping

(2.4) ω : E(S) o Σ(S)→ S, (e, (λ, ρ))ω = eρ

is a surjective idempotent separating homomorphism. The action

(2.5) β : Σ(S)→ Autd(E(S))

of Σ(S) on E(S) involved in the definition of this semidirect product
is defined, for any e ∈ E(S) and any (λ, ρ) ∈ Σ(S), by the rule

(2.6) (λ,ρ)e = λeρ−1 .

Recall that, in a regular semigroup, for any element a, and for any
left translation λ and any right translation ρ, we have (λa)ρ = λ(aρ),
therefore parentheses can be omitted.
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It is also shown in [1, Section 5] that any inverse semigroup ho-
momorphic image of a semidirect product of a band by a group is
necessarily an almost factorizable inverse semigroup. In particular, by
Result 2.1, the greatest inverse semigroup homomorphic image of any
almost factorizable orthodox semigroup is almost factorizable. There-
fore the analogues of (2.4) and (2.6) can be introduced for S/γ. We have

E(S/γ) = E(S)/D on which Σ(S/γ) acts by the rule (λ,ρ)De = λDeρ
−1.

This determines a semidirect product (E(S)/D) o Σ(S/γ) and a sur-
jective homomorphism

(2.7) ω : (E(S)/D) o Σ(S/γ)→ S/γ, (De, (λ, ρ))ω = Deρ.

The following observation allows us to define a mapping from Σ(S)
to Σ(S/γ) in a natural way for any orthodox semigroup S.

Lemma 2.2. Let S be an orthodox semigroup and let (λ, ρ) ∈ Σ(S).
Define

λγ : S/γ → S/γ, λγ(sγ) = (λs)γ

and
ργ : S/γ → S/γ, (sγ)ργ = (sρ)γ .

Then (λγ, ργ) ∈ Σ(S/γ).

Proof. Let (λ, ρ) ∈ Σ(S). If s ∈ S and x ∈ V (s) then λ−1x ∈ V (sρ).
For, we have

sρ · λ−1x · sρ = (sρ · λ−1x · s)ρ = (s · λ(λ−1x) · s)ρ
= (sxs)ρ = sρ

and

λ−1x · sρ · λ−1x = λ−1(x · sρ · λ−1x) = λ−1(x · s · λ(λ−1x))

= λ−1(xsx) = λ−1x .

Therefore if s γ t in S then sρ γ tρ also holds. This ensures that ργ is
well defined. It is routine to check that ργ is, indeed, a right translation
of S/γ. Moreover, ργ(ρ

−1)γ = (ρ−1)γργ = idS/γ, and so ργ is bijective
and (ργ)

−1 = (ρ−1)γ. From now on, for the latter right translation we
simply write ρ−1γ . Similarly, we obtain that λγ is also a well-defined bi-

jective left translation of S/γ, and we have (λγ)
−1 = (λ−1)γ. The latter

left translation is denoted briefly by λ−1γ . Finally, it is also immediate
by definition that λγ and ργ are linked, and so (λγ, ργ) ∈ Σ(S/γ). �

Let us define, for any orthodox semigroup S, the mapping

(2.8) χ : Σ(S)→ Σ(S/γ), (λ, ρ)χ = (λγ, ργ) .

Obviously, χ is a group homomorphism.
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By definitions and by the proof of the previous lemma, the actions
of Σ(S) on E(S) and of Σ(S/γ) on E(S)/D defined above are closely
related: we have

D(λ,ρ)e =
(
(λ,ρ)e

)
γ =

(
λeρ−1

)
γ

= λγ(eγ)ρ−1γ = (λγ ,ργ)De

for every e ∈ E(S) and (λ, ρ) ∈ Σ(S). This implies that the mapping

ϑ : E(S) o Σ(S)→ (E(S)/D) o Σ(S/γ),(2.9)

(e, (λ, ρ))ϑ = (De, (λγ, ργ))

is a homomorphism. Moreover, we have

(2.10) ωγ\ = ϑω.

Note that if the homomorphism χ is surjective, and we identify
Σ(S/γ) with the factor group Σ(S)/Kerχ then we have ϑ = δζKerχ

where the homomorphisms δ : E(S) o Σ(S) → (E(S)/D) o Σ(S) and
ζKerχ : (E(S)/D) o Σ(S) → (E(S)/D) o (Σ(S)/Kerχ) are defined as
above.

3. The structure of E-unitary almost factorizable
orthodox semigroups

In this section we characterize the idempotent separating E-unitary
congruences on a semidirect product of a band by a group, and describe
the structure of any E-unitary almost factorizable orthodox semigroup
as a Schreier-type extension of a band by a group.

Proposition 3.1. Let B be a band and G be a group acting on B. Let
N CG such that the following condition is satisfied for every a, b ∈ B
and n ∈ N :

(C) n(ab) · bL abR a · n(ab).

Define a relation on the semidirect product B oG in the way that, for
every (a, g), (b, h) ∈ B oG, let

(a, g)κ (b, h) ⇔ Ng = Nh, aR b and g−1

aL h−1

b.

Then

(1) κ is an idempotent separating E-unitary congruence on BoG,
(2) φ : (B oG)/κ→ G/N, (a, g)κ 7→ Ng is a surjective and idem-

potent pure homomorphism, and so the greatest group homo-
morphic image of (B oG)/κ is G/N .

Conversely, each idempotent separating E-unitary congruence κ on the
semidirect product B oG is of this form for a unique normal subgroup
N in G.
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Proof. Let κ be an idempotent separating E-unitary congruence on
B o G, and put S = (B o G)/κ. Denote the least group congruence
on S by σ. Since the congruence induced by the second projection
π : B o G → G is the least group congruence on B o G, there is a
unique homomorphism τ : G→ S/σ with πτ = κ\σ\, see Diagram 1.

s s
s s

B oG G

S S/σ

π

σ\

κ\ τ
?? ??

--

--

Diagram 1

Denote the kernel of the group homomorphism τ by N . Assume that
(a, g), (b, h) ∈ B oG with (a, g)κ (b, h). Observe that in this case, we
have Ng = Nh. Since κ is idempotent separating, we also have that
(a, g)R (b, h) and (a, g)L (b, h). This implies that

(3.1) aR b and g−1

aL h−1

b .

In particular, we infer for every a, b ∈ B and n ∈ N that

(3.2) (a, n)κ (b, 1) if and only if aR b and n−1

aL b .
Since S is E-unitary, we have (a, n)κ ∈ E(S). Hence, for every a ∈ B
and n ∈ N , there exists a unique b ∈ B such that (a, n)κ (b, 1). By

(3.2) this implies that aD n−1
a and b = a · n−1

a. Moreover, the property
that aD na for any a ∈ B and n ∈ N ensures that, for every b ∈ B
and n ∈ N , there exists a unique a ∈ B such that bR aL nb, and so
(a, n)κ (b, 1) follows by (3.2). In this case, we have a = b · nb.

Now let a, b ∈ B and n, q ∈ N . By the previous observation, we have
(a, 1)κ (a · na, n) and (b, 1)κ (b · qb, q), and since κ is a congruence, we
see that

(ab, 1) = (a, 1)(b, 1)κ (a · na, n)(b · qb, q) = (a · na · nb · nqb, nq).
By applying property (3.1) and the relations

aD naD q−1

aD (nq)−1

a and bD nbD q−1

bD nqb,

we deduce that abR a · n(ab) and abL (nq)−1
(n(ab) · nqb) = q−1

(ab) · b.
Since n, q ∈ N are arbitrary, thus we have proved that each idempotent
separating E-unitary congruence on BoG is of the form stated in the
proposition.

In order to show the converse part, we have to verify that the relation
κ defined in the proposition is, indeed, an idempotent separating E-
unitary congruence on BoG. It is immediate that κ is an equivalence.
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Let (a, g), (b, h), (c, k) ∈ B o G such that (a, g)κ (b, h), that is, Ng =
Nh and (3.1) holds. In order to check left compatibility of κ, we need
to show that the elements (c, k)(a, g) = (c · ka, kg) and (c, k)(b, h) =
(c ·kb, kh) are κ-related. Here Ng = Nh and (3.1) imply Nkg = kNg =
kNh = Nkh and c · kaR c · kb, respectively. Finally, we check that the
elements (kg)−1

(c · ka) = g−1k−1
c · g−1

a and (kh)−1
(c · kb) = h−1k−1

c · h−1
b are

L-related. By applying condition (C) with the element h−1g ∈ N , we

obtain that g−1k−1
c · g−1

aL h−1g(g
−1k−1

c) · h−1g(g
−1
a) · g−1

a = h−1k−1
c · h−1

a ·
g−1
a = h−1k−1

c · h−1
(a · hg−1

a). Here we have hg−1 ∈ N and, again by

(3.1), we have aR bL hg−1
a whence b = a · hg−1

a. Thus we see that κ is
left compatible. Right compatibility follows dually, and so κ is, indeed,
a congruence.

It is obvious by the definition of κ that it is idempotent separating.
Moreover, the mapping φ : (B o G)/κ → G/N, (a, g)κ 7→ Ng is a
homomorphism of (B o G)/κ onto G/N . We intend to show that the
kernel Kφ of the group congruence of (B o G)/κ induced by φ, that
is, Kφ = {(a, n)κ : a ∈ B, n ∈ N} is just E((B o G)/κ). This
directly implies that φ is idempotent pure, (B o G)/κ is E-unitary,
and its greatest group homomorphic image is G/N . In order to see the
statement formulated, first notice that property (C) implies that, for
every a ∈ B and n ∈ N , we have

(3.3) aD na .

For, by (C), we have a = a · aR a · n(a · a) = a · na for any a ∈ B

and n ∈ N . Therefore also naR na · n−1
(na) = na · a hold whence aD na

follows. This observation immediately implies that, for any a ∈ B and
n ∈ N , we have aR a · n−1

a and n−1
aL a · n−1

a. Thus each element
(a, n) ∈ B o G with a ∈ B, n ∈ N is κ-related to the idempotent

(a · n−1
a, 1), and so (a, n)κ is idempotent. Hence Kφ = E((B o G)/κ)

is verified.
Finally, notice that the kernel of the unique group homomorphism

τ : G → (B o G)/κ)/σ which satisfies πτ = κ\σ\ is just N by the
property verified in the previous paragraph. Therefore N is, indeed,
uniquely determined. �

By Result 2.1, we can formulate the following corollary.

Corollary 3.2. Each E-unitary almost factorizable orthodox semi-
group is isomorphic to a factor semigroup of a semidirect product BoG
of a band by a group modulo a congruence κ defined, as in Proposi-
tion 3.1, by means of a normal subgroup N of G satisfying condition
(C) in Proposition 3.1.
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The use of a factor semigroup can be avoided from the construction
by representing each class with an element. This leads to a description
of the structure of E-unitary almost factorizable orthodox semigroups.
Before continuing in this direction, we formulate another corollary to
Proposition 3.1 for later use.

We have noticed in the proof of Proposition 3.1 that property (C)
implies (3.3) for every a ∈ B and n ∈ N , that is, that N acts identically
on B/D. Conversely, if B is a normal band then this property implies
(C). By applying thatR is the equality relation for any left normal band
B and each of R, L, D is the equality relation for any semilattice, we
can simplify Proposition 3.1 for left normal bands and, in particular,
for semilattices, as follows.

Corollary 3.3. Let B be a left normal band [semilattice] and G be a
group acting on B. Let N C G which acts identically on B/D [B].
Define a relation on the semidirect product B oG in the way that, for
every (a, g), (b, h) ∈ B oG, let

(a, g)κ (b, h) ⇔ Ng = Nh and a = b.

Then

(1) κ is an idempotent separating E-unitary congruence on BoG,
(2) φ : (B oG)/κ→ G/N, (a, g)κ 7→ Ng is a surjective and idem-

potent pure homomorphism, and so the greatest group homo-
morphic image of (B oG)/κ is G/N .

Conversely, each idempotent separating E-unitary congruence κ on the
semidirect product B oG is of this form for a unique normal subgroup
N in G.

Returning to the study of the structure of E-unitary almost factor-
izable orthodox semigroups, now we introduce a Schreier-type general-
ization of a semidirect product of a band by a group, and apply this
construction to describe the structure of these semigroups by means of
bands and groups.

Construction 3.4. Let B be a band and H a group. Consider a
mapping ξ : H → AutdB, h 7→ ξh such that the following conditions
are satisfied by ξ and by the mapping

η : H ×H → AutdB, (h, k) 7→ ηh,k = ξhkξ
−1
k ξ−1h :

(Q0) ξ1 = idB,
(Q1) aD ηh,ka for every h, k ∈ H and a ∈ B,
(Q2) ηh,k(ab) · bL abR a · ηh,k(ab) for every h, k ∈ H and a, b ∈ B.
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Define a multiplication on the set B ×H in the following manner: for
every (a, h), (b, k) ∈ B ×H, let

(a, h)(b, k) = (a · ξhb · ηh,k(a · ξhb), hk).

Denote the structure obtained by Q(B,H; ξ), and refer to it as a Q-
product of B by H.

Notice that this construction is a generalization of a semidirect prod-
uct of a band by a group. Indeed, ξ is a homomorphism if and only if η
is trivial, that is, ηh,k = idB for every h, k ∈ H. In this case (Q0)–(Q2)
trivially hold, and so Q(B,H; ξ) = BoH where the action of H on B
involved in the semidirect product is given by ξ.

Theorem 3.5. Let B be a band and H a group. Let ξ : H → AutdB
be a mapping such that conditions (Q0)–(Q2) are satisfied. Then the
Q-product Q(B,H; ξ) of B by H is an E-unitary almost factorizable
orthodox semigroup. Conversely, each E-unitary almost factorizable
orthodox semigroup is isomorphic to a Q-product of a band by a group.

Proof. Let S = Q(B,H; ξ) be as defined in Construction 3.4. First
we establish several consequences of conditions (Q0)–(Q2). By the
definition of η it is straightforward to see that, for any h, k ∈ H, we
have

(Q3) η1,h = ηh,1 = idB,
(Q4) ξhk = ηh,kξhξk.

Moreover, for any h, k, l ∈ H, we have

(Q5) ηhk,lηh,kξh = ηh,klξhηk,l.

For, we obtain from (Q4) that

ξhkl = ηhk,lξhkξl = ηhk,lηh,kξhξkξl

and

ξhkl = ηh,klξhξkl = ηh,klξhηk,lξkξl,

whence (Q5) follows.
Denote by 〈η〉 the subgroup of AutdB generated by the subset {ηh,k :

h, k ∈ H}. The following relations generalize (Q1) and (Q2): we have

(Q6) aD αa for every α ∈ 〈η〉 and a ∈ B,
(Q7) α(ab) · bL abR a · α(ab) for every α ∈ 〈η〉 and a, b ∈ B.

Consider the following subsets in AutdB:

AD = {α ∈ AutdB : aD αa for every a ∈ B},
AL = {α ∈ AutdB : abLα(ab) · b for every a, b ∈ B},
AR = {α ∈ AutdB : abR a · α(ab) for every a, b ∈ B}.
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Since ηh,k ∈ AD, AL, AR for every h, k ∈ H by (Q1) and (Q2), proper-
ties (Q6) and (Q7) follow if we show that AD, AL, AR are subgroups in
AutdB. Clearly, idB ∈ AD, AR. If α, α′ ∈ AD then, for any a ∈ B, we
deduce by (Q1) that α−1aD α(α−1a)D a and (α′α)aD α′(αa)D αaD a.
Thus AD is, indeed, a subgroup, and so (Q6) is verified. Now let α, α′ ∈
AR and a, b ∈ B. Then abR a·α(ab) implies α−1(ab)Rα−1(a·α(ab)) =
α−1a ·ab. Hence a ·α−1(ab)R a ·α−1a ·ab = ab follows where, in the last
equality, we apply (Q6). Similarly, the relation abR a · α(ab) implies
α′(ab)Rα′a · (α′α)(ab), whence we deduce

a · α′(ab) R a · α′a · (α′α)(ab) = a · (α′α)(ab).

In the last step we utilize that a, α′a and (α′α)a are D-related elements
in B by (Q6). Since abR a ·α′(ab), we obtain from the former relation
that abR a · (α′α)(ab). Therefore we see that AR is a subgroup, and a
dual argument shows that the same holds for AL. This completes the
proof of (Q7).

In order to check that S is a semigroup, consider arbitrary elements
(a, h), (b, k), (c, l) ∈ S, and compute the products ((a, h)(b, k))(c, l) and
(a, h)((b, k)(c, l)). The second components are clearly equal, the first
components are

(3.4) x = a · ξhb · ηh,k(a · ξhb) · ξhkc · ηhk,l(a · ξhb · ηh,k(a · ξhb) · ξhkc)

and

(3.5) y = a · ξh(b · ξkc · ηk,l(b · ξkc)) · ηh,kl(a · ξh(b · ξkc · ηk,l(b · ξkc))),

respectively. By (Q1), here we have

xR a · ξhb · ηh,k(a · ξhb) · ξhkc

and

yR a · ξhb · ξhξkc.
By applying conditions (Q2) and (Q4), hence we see that

x R a · ξhb · ηh,k((a · ξhb) · η−1h,kξhkc)
R a · ξhb · η−1h,kξhkc = a · ξhb · ξhξkc R y .

Similarly, we obtain from (3.4) and (3.5) that

xL ηhk,l(ηh,k(a · ξhb) · ξhkc)

and

yL ηh,kla · ηh,klξh(b · ξkc) · ηh,klξhηk,l(b · ξkc) .
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By conditions (Q5), (Q7) and (Q4), we deduce that

y L ηh,klη
−1
h,kη

−1
hk,l(ηhk,lηh,ka · ηhk,lηh,kξh(b · ξkc)) · ηhk,lηh,kξh(b · ξkc)

L ηhk,lηh,ka · ηhk,lηh,kξh(b · ξkc)
= ηhk,lηh,k(a · ξhb) · ηhk,lηh,kξhξkc
= ηhk,lηh,k(a · ξhb) · ηhk,lξhkc L x.

Thus x = y, and we have verified that S is a semigroup.
Regularity of S is routine to show by computing that, for every

(a, h) ∈ S, we have (a, h)(ξ−1h a, h−1)(a, h) = (a, h). Here properties
(Q1), (Q0) and (Q3) are applied, and the details are left to the reader.
Conditions (Q0) and (Q3) also imply that E(S) = {(a, 1) ∈ S : a ∈ B},
and that E(S) is closed under multiplication. Moreover, the second
projection of S is a surjective homomorphism to the group H, and the
kernel of the group congruence induced by it is just E(S). This implies
that S is an E-unitary orthodox semigroup.

Now we turn to proving that S is almost factorizable. For any u ∈ H,
let us define a right map ρu : S → S and a left map λu : S → S as
follows: for every (a, h) ∈ S, let

(3.6) (a, h)ρu = (a · ηh,ua, hu)

and

(3.7) λu(a, h) = (ξua · ηu,hξua, uh).

We show that ρu is a right translation of S. If (a, h), (b, k) ∈ S then
the second components of (b, k)((a, h)ρu) and ((b, k)(a, h))ρu clearly
coincide, so it suffices to verify the equality of the first components

x = b · ξk(a · ηh,ua) · ηk,hu(b · ξk(a · ηh,ua))

and

y = b · ξka · ηk,h(b · ξka) · ηkh,u(b · ξka · ηk,h(b · ξka)).

Observe that, by (Q1), the relation xR b · ξkaR y clearly holds. Fur-
thermore, we have

xL ηk,hu(b · ξk(a · ηh,ua)) and yL ηkh,uηk,h(b · ξka).

Applying (Q5) and (Q7), we obtain that

x L ηk,hu(b · ξka) · ηk,huξkηh,ua
= ηk,hu(b · ξka) · ηkh,uηk,hξka
= ηk,huη

−1
k,hη

−1
kh,u(ηkh,uηk,hb · ηkh,uηk,hξka) · ηkh,uηk,hξka

L ηkh,uηk,h(b · ξka) L y.
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Thus x = y follows, and so ρu is proved to be a right translation. It is
injective since, for every (a, h), (b, k) ∈ S with (a, h)ρu = (b, k)ρu, we
see that h = k and a · ηh,ua = b · ηh,ub. Therefore (Q1) implies aR b
and ηh,uaL ηh,ua whence a = b follows. The right translation ρu is also
surjective since, again by (Q1),

(a · η−1hu−1,ua, hu
−1)ρu = (a · η−1hu−1,ua · ηhu−1,u(a · η−1hu−1,ua), h) = (a, h) .

Notice that, in particular, this implies by (Q3) that any element (a, h) ∈
S is of the form (a, 1)ρu where (a, 1) ∈ E(S) and u = h. Dually, one can
verify that λu is a bijective left translation for any u ∈ H. The fact that
the pair (λu, ρu) is linked is checked by carrying over similar calculations
on (a, h)ρu · (b, k) and (a, h) · λu(b, k) as above. Thus (λu, ρu) ∈ Σ(S).
This completes the proof of the fact that S = Q(B,H; ξ) is an E-
unitary almost factorizable orthodox semigroup.

Conversely, let S be an E-unitary almost factorizable orthodox semi-
group. Then, by Proposition 3.1, S is isomorphic to a factor semigroup
(BoG)/κ. For simplicity, assume that S = (BoG)/κ. Put H = G/N ,
and choose and fix, for every h ∈ H, an element rh ∈ G from the coset
h, that is, an element rh ∈ G with Nrh = h. In particular, let r1 = 1.
Since Nrhk = Nrhrk for any h, k ∈ H, there is a unique n ∈ N with
rhk = nrhrk. Denote this element n by nh,k. Denote the automor-
phisms of B assigned by the action of G on B to rh and nh,k (h, k ∈ H)
by ξh and ηh,k, respectively. By the choices of rh and nh,k (h, k ∈ H)
we immediately see that ξ satisfies condition (Q0), and that ηh,k is just
ξhkξ

−1
k ξ−1h . Property (C) in Proposition 3.1 and relation (3.3) imply

that conditions (Q1) and (Q2) are also fulfilled. Thus the semigroup
Q(B,H; ξ) is defined.

Observe by the definition of κ that, for any (a, g) ∈ B o G, there
exist uniquely determined h ∈ H and b ∈ B such that (a, g)κ (b, rh),

namely, h = Ng and b = a · rhg−1
a. In deducing the latter equality

we apply that rhg
−1 ∈ N and that (3.3) is valid. Define a mapping

ψ : S → Q(B,H; ξ) by the rule ((a, g)κ)ψ = (a · rNgg−1
a,Ng). This

mapping is obvouisly surjective because ((a, rh)κ)ψ = (a, h) for every
(a, h) ∈ Q(B,H; ξ). It is also injective since if ((a, g)κ)ψ = ((b, q)κ)ψ

then Ng = Nq in H and, putting h = Ng = Nq, we have a · rhg−1
a =

b · rhq−1
b. Applying (3.3), we obtain that aR b and g−1

aL q−1
b which

implies (a, g)κ (b, q) by definition. Finally, we verify that ψ is a homo-
morphism. By definition, we have

((a, rh)κ)ψ · ((b, rk)κ)ψ = (a, h)(b, k)

= (a · ξhb · ηh,k(a · ξhb), hk)
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and

(((a, rh)κ)((b, rk)κ))ψ = ((a · rhb, rhrk)κ)ψ

= ((a · rhb · rhk(rhrk)−1

(a · rhb), rhk)κ)ψ

= ((a · rhb · nh,k(a · rhb), rhk)κ)ψ

= (a · ξhb · ηh,k(a · ξhb), hk).

Thus ψ is an isomorphism, and so S is isomorphic to Q(B,H; ξ). �

Combining Result 2.1, Theorem 3.5, its proof and the observations
in Section 2, we can describe the structure of an E-unitary almost
factorizable orthodox semigroup by means of internal parameters.

We have already mentioned that if S is an almost factorizable ortho-
dox semigroup then S/γ is an almost factorizable inverse semigroup.
Since γ ⊆ σ, it is clear that if S is E-unitary then so is S/γ. There-
fore if S is an E-unitary almost factorizable orthodox semigroup then
S/γ is an E-unitary almost factorizable inverse semigroup. It is well
known that in this case, S/γ is isomorphic to a semidirect product of
a semilattice by a group. More precisely, one can deduce by combining
[3, Theorem 7.1.8], [4, Theorem V.2.8] and [1, Lemma 3] that the ho-
momorphism ω defined in (2.7) is, in fact, an isomorphism. Therefore
(2.10) implies that the homomorphism ϑ defined in (2.9) is necessarily
surjective. Applying the second projections π and π of E(S) o Σ(S)
and of (E(S)/D) o Σ(S/γ), respectively, we also see that the group
homomorphism χ defined in (2.8) is surjective. Since these projections
induce the least group congruences, Diagram 2 can be completed by
the isomorphism ι : Σ(S/γ)→ S/σ, so that it be commutative:

s s

s s
s s s

E(S) o Σ(S)

(E(S)/D) o Σ(S/γ)

Σ(S)

Σ(S/γ)

S
S/γ

S/σ

π

γ\ (σ/γ)\

π
ω

ω

χ

ι

ϑ

??

??

??

��
??

��

--

-- --

--

HH
HHH

HHH
HHj

Diagram 2

By a left inverse of χ we mean a mapping ε : Σ(S/γ) → Σ(S) such
that εχ = idS/γ. Notice that this equality is equivalent to requiring that
the image of ε forms a transversal for the kernel of χ. If, moreover,
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ε assigns the identity (idS, idS) ∈ Σ(S) to the identity (idS/γ, idS/γ) ∈
Σ(S/γ) then ε is termed a unitary left inverse of χ.

Theorem 3.6. Let S be an E-unitary almost factorizable orthodox
semigroup. For every unitary left inverse ε of χ, the mapping ξ = εβ
(see (2.5)) satisfies conditions (Q0)–(Q2), and S is isomorphic to the
Q-product Q(E(S),Σ(S/γ); ξ).

Proof. By the previous argument, the kernel κ of ω is an idempotent
separating E-unitary congruence on E(S)oΣ(S), and so ω induces an
isomorphism from (E(S) o Σ(S))/κ onto S. Moreover, S/σ is isomor-
phic to Σ(S/γ). Thus, by identifying them via ι, we see that the normal
subgroup of Σ(S) corresponding to κ according to Proposition 3.1 is
just the kernel of χ. Therefore the proof of the converse part of The-
orem 3.5, applied for the transversal determined by ε, immediately
implies the assertion. �

4. Semidirect products of bands by groups

In this section we investigate under what conditions a factor semi-
group of a semidirect product of a band by a group over an idempotent
separating E-unitary congruence is isomorphic to a semidirect product
of a band by a group. We present an E-unitary almost factorizable
orthodox semigroup which is not isomorphic to a semidirect product
of a band by a group, and we provide a necessary and sufficient con-
dition for an E-unitary almost factorizable orthodox semigroup to be
isomorphic to such a semidirect product.

s s s

s s
s s s

B oG
(B/D) oG

G

(B/D) o (G/N) G/N

S = (B oG)/κ
S/γ

S/σ

δ π

γ\ (σ/γ)\

ζN

πN
κ\

ι

N \

ι

??

?? ??

??

��
??

��

--

--

--

--

--

Diagram 3

Now let B be any band and let G be a group acting on B. Sup-
pose that κ is an idempotent separating E-unitary congruence on the
semidirect product BoG. For brevity, put S = (BoG)/κ. By Propo-
sition 3.1, the relation κ is determined by a normal subgroup N of G
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satisfying (C). As it is noticed above, N acts identically onB/D, and we
can consider the homomorphisms in Diagram 3 where π, δ and ζN are
defined in (2.1)–(2.3), πN is the second projection of (B/D) o (G/N),
and N \ denotes the natural homomorphism G→ G/N, g 7→ Ng. Fur-
thermore, ι is used to denote the inverse of the isomorphism from S/σ
onto G/N determined by φ in Proposition 3.1(2). It is immediate that
the diagram consisting of all the arrows of Diagram 3 but ι is commu-
tative. Since S is E-unitary, the congruence γ is idempotent pure, and
the factor semigroup S/γ is an E-unitary inverse semigroup. Hence,
for any a, b ∈ B and g, h ∈ G, the elements (a, g)κ and (b, h)κ of S are
γ-related if and only if they are σ-related, and

(4.1) (((a, g)κ)γ) (((a, g)κ)γ)−1 = (((b, h)κ)γ) (((b, h)κ)γ)−1 .

The former property is equivalent to Ng = Nh by Proposition 3.1(2).
Equation (4.1) is equivalent to ((a, 1)κ)γ = ((b, 1)κ)γ, and since κ
is idempotent separating, it is equivalent to the equality Da = Db.
Therefore

ι : (B/D) o (G/N)→ S/γ, (Da, Ng) 7→ ((a, g)κ)γ

is a bijection, and it makes the diagram commutative. By definitions,
one can check that ι is, in fact, an isomorphism.

Now suppose that S is isomorphic to a semidirect product of a band
by a group. Then the band is necessarily isomorphic to E(S), and
so to B, and the group to S/σ and so to G/N . Thus there is an
action of G/N on B and an isomorphism ψ from S onto the respective
semidirect product B o (G/N) such that the following two properties
hold. First, ψπ′, where π′ is the second projection of Bo (G/N) is just
φ in Proposition 3.1(2), and second, the restriction of ψ to the bands
of idempotents is ‘essentially identical’, more precisely, we have

(4.2) ((a, 1)κ)ψ = (a,N)

for every a ∈ B. The action of G/N on B determines an action of
G/N on B/D, and it defines a semidirect product that we denote by
(B/D)o′ (G/N) in order to distinguish it from the semidirect product
(B/D)o(G/N) in Diagram 3 which is introduced in Section 2. Consider
the surjective homomorphism (cf. (2.2))

δ : B o (G/N)→ (B/D) o′ (G/N), (a,Ng) 7→ (Da, Ng).

It induces the least inverse semigroup congruence on B o (G/N), and
so (B/D) o (G/N) and (B/D) o′ (G/N) are isomorphic. What is
more, it is easy to check by taking into account the definition of ψ that
(B/D)o(G/N) and (B/D)o′(G/N) coincide. In particular, this means
that the two actions of G/N on B/D, namely, the action determined by
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the action of G/N on B and the action defining the semidirect product
(B/D)o (G/N) coincide. This property can be formulated in the way
that, for any a ∈ B and g ∈ G, we have

(4.3) NgaD ga.

This implies that Bo(G/N), ψ and δ fit in Diagram 3 so that ψδι = γ\,
see Diagram 4.

s s

s s
s s

B oG (B/D) oG

B o (G/N)
(B/D) o (G/N)

S S/γ

δ

γ\

δ
κ\

ζN

ι

??

??

??

��

--

--

--11

��
ψ

Diagram 4

Let a, e ∈ B and g ∈ G such that ((a, g)κ)ψ = (e,Ng). Then we
have

(e,N)R (e,Ng) = ((a, g)κ)ψR ((a, 1)κ)ψ = (a,N)

and

(Ng
−1

e,N)L (e,Ng) = ((a, g)κ)ψL ((g
−1

a, 1)κ)ψ = (g
−1

a,N).

Hence we obtain that eR a and Ng−1
eL g−1

a, and so aR eLNg(g
−1
a)

follows. Thus e = a · Ng(g−1
a), and this implies

(4.4) ((a, g)κ)ψ =
(
a · Ng(g−1

a), Ng
)

for every a ∈ B and g ∈ G. Since ψ is an isomorphism, we have(
ab · Ng(g−1

(ab)), Ng
)

= ((ab, g)κ)ψ = ((a, 1)κ)ψ · ((b, g)κ)ψ

= (a,N)
(
b · Ng(g−1

b), Ng
)

=
(
ab · Ng(g−1

b), Ng
)

for every a, b ∈ B and g ∈ G. Thus ab · Ng(g−1
(ab)) = ab · Ng(g−1

b).
Substituting ga, gb for a, b, respectively, this implies g(ab)·Ng(ab) = g(ab)·
Ngb whence we infer Ng(ab)L g(ab)·Ngb by (4.3), and so abLNg−1

(g(ab))·b
follows for every a, b ∈ B and g ∈ G. Starting with the equality
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((a · gb, g)κ)ψ = ((a, g)κ)ψ · ((b, 1)κ)ψ (a, b ∈ B, g ∈ G), a similar
argument provides the equality

(a · gb) · Ng
(
g−1

(a · gb)
)

= a · Ng(g−1

a) · Ngb.

Substituting ga for a, hence we deduce g(ab) · Ng(ab) = ga · Ng(ab), and

this implies by (4.3) that g(ab)R ga ·Ng(ab), whence abR a · g−1(Ng(ab)).
Thus we have proved the only if part of the following assertion.

Proposition 4.1. Let B be a band, G a group acting on B, and let κ
be an idempotent separating E-unitary congruence on B o G. Denote
by N the normal subgroup of G corresponding to κ by Proposition 3.1.
Then the factor semigroup (B o G)/κ is isomorphic to a semidirect
product of a band by a group if and only if there exists an action of
G/N on B such that

(4.5) ab R a · g−1(Ng(ab)) and ab L Ng−1

(g(ab)) · b

for every a, b ∈ B and g ∈ G.

Proof. Suppose that G/N acts on B such that (4.5) holds. Consider
the mapping ψ : S → B o (G/N) defined by the rule (4.4). We verify
that ψ is an isomorphism. First of all, observe that (4.5) implies (4.3).
For, applying (4.5) in case b = a, we deduce that DNg−1(ga) ≥ Da and

Dg−1(Nga) ≥ Da. HenceDga ≥ DNga andDNga ≥ Dga follow, respectively,

which prove (4.3).
The fact that ψ is bijective can be easily checked by applying (4.3)

and the properties of N in Proposition 3.1. Indeed, if(
a · Ng(g−1

a), Ng
)

=
(
b · Nh(h−1

b), Nh
)

for some a, b ∈ B and g, h ∈ G, then Ng = Nh, aR b and g−1
aL h−1

b,
and they immediately imply together with (4.3) that a = b. This
establishes injectivity. Furthermore, by (4.3), we can easily see that((
b · g(Ng−1

b), g
)
κ
)
ψ = (b,Ng) for any b ∈ B and g ∈ G thus proving

surjectivity.
Finally, we check that ψ is a homomorphism. Let a, b ∈ B and g, h ∈

G. In order to show that ((a, g)κ · (b, h)κ)ψ = ((a, g)κ)ψ · ((b, h)κ)ψ, it
suffices to prove that the band components of the left and right hand
sides are both R- and L-related. Again by (4.3), this is equivalent to
verifying the relations

(4.6) a · gb R a · Ng(g−1

a) · Ngb
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and

(4.7) Ngh
(
(gh)−1

(a · gb)
)
L Ng(g

−1

a) · Ng
(
b · Nh(h−1

b)
)
.

By the first relation in (4.5), we deduce that

a · Ng(g−1

a) · Ngb = a · Ng(g−1

a · b)

R a · g
(
Ng−1

(
a · Ng(g−1

a · b)
))

= a · g(Ng−1

a) · a · gb = a · gb.
In the last step we applied (4.3) to infer a · g(Ng−1

a) · a = a. Thus (4.6)
is proved. Similarly, by the second relation in (4.5), we obtain

Ngh
(
(gh)−1

(a · gb)
)

= Ngh
(
(gh)−1

a · h−1

b
)

L Ngh
(
N(gh)−1

(
gh
(
(gh)−1

a · h−1

b
))
· h−1

b
)

= a · gb · Ngh(h−1

b)

and
Ng(g

−1

a) · Ng
(
b · Nh(h−1

b)
)

= Ng(g
−1

a · b) · Ngh(h−1

b)

L Ng
(
Ng−1

(
g(g

−1

a · b)
)
· b
)
· Ngh(h−1

b)

= a · gb · Ngb · Ngh(h−1

b)

= a · gb · Ngh(h−1

b),

where in the last step we again utilized (4.3) to see that gb · Ngb ·
Ngh(h

−1
b) = gb · Ngh(h−1

b). This completes the proof of (4.7). �

We have noticed in the previous proof that the conditions in Propo-
sition 4.1 imply property (4.3). Conversely, if the band B is left normal
then property (4.3) implies the equalities in the proposition. Therefore
we obtain the following corollary.

Corollary 4.2. Let B be a left normal band, G a group acting on
B, and let κ be an idempotent separating E-unitary congruence on
B oG. Denote by N the normal subgroup of G corresponding to κ by
Corollary 3.3. Then the factor semigroup (B oG)/κ is isomorphic to
a semidirect product of a band by a group if and only if there exists an
action of G/N on B such that (4.3) holds for every a ∈ B and g ∈ G.

This corollary allows us to provide a finite, E-unitary almost fac-
torizable orthodox semigroup with a left normal band of idempotents
which is not isomorphic to a semidirect product of a band by a group.
Note that this semigroup is generalized inverse andR-unipotent. Thus,
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among the orthodox semigroups, it is as close to being inverse as pos-
sible.

Denote by Y the following semilattice:

s
0

s
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s
f

s
h

s
H
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Diagram 5

Define a left normal band B with zero element 0 which is a semilat-
tice Y of left zero semigroups where each non-zero D-class has two
elements. As usual, let us identify B/D with Y . For every x ∈
{e, E, f, F, g,G, h,H} we denote the elements of the D-class x by x1
and x2. Let the natural partial order of B be defined by the relations
xi < yi for almost every i ∈ {1, 2} and x, y ∈ Y with x < y. The only
exceptions are the following two cases: F1 < g2 instead of F1 < g1 and,
similarly, F2 < g1 instead of F2 < g2. This ‘twist’ is the heart of our
construction. It is well known that the natural partial order determines
the structure homomorphisms, and so the multiplication of B.

An action of the four-element cyclic group Z4 can be defined on B
by assigning the permutation

ς = (e1 E1 e2 E2)(f1 F1 f2 F2)(h1 H1 h2 H2)(g1 G1 g2 G2).

of order 4 to 1. In order to verify that ς is, indeed, an automorphism
of B, it suffices to check that x < y implies xς < yς for every x, y ∈ B.
Due to the ‘twist’ in the construction, this property holds. For example
f1 < G1, and indeed f1ς = F1 < g2 = G1ς. Denote by B o Z4 the
semidirect product defined by this action.

Put N = {0, 2} which is a 2-element (normal) subgroup of Z4.
By Corollary 3.3, N determines an idempotent separating E-unitary
congruence κ on this semidirect product, and the factor semigroup
S = (B o Z4)/κ is an E-unitary almost factorizable orthodox semi-
group with greatest group homomorphic image isomorphic to Z2.
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By Corollary 4.2, S is isomorphic to a semidirect product of a band
by a group if and only if there exists an action of the group Z2 on B
such that the automorphism assigned to the generating element 1̄ of
Z2 determines the following permutation of the D-classes of B, that is,
of the elements of Y :

(e E)(f F )(g G)(h H).

However, observe that the image of e1 under the automorphism corre-
sponding to 1̄ determines the whole automorphism, so, actually there
are at most two automorphisms: one maps e1 to E1, and another maps
e1 to E2. Suppose that e1 is mapped to E1. In this case, e2 is neces-
sarily mapped to E2 since the image of e2 lies in the D-class E. In this
case the images of the elements of the D-classes f, F, h,H are deter-
mined by the natural partial order: f1 is mapped to F1, h1 to H1, and
so on. However, if f1 is mapped to F1 then f1 < G1 implies that G1

is mapped to g2. Similarly, H1 is mapped to h1, thus G1 is necessarily
mapped to g1, which is a contradiction. Similarly, one can see that
the assumption that e1 is mapped to E2 also leads to a contradiction.
Thus S cannot be isomorphic to a semidirect product of a band by a
group. So we have proved the following result.

Theorem 4.3. There exists a finite, E-unitary almost factorizable or-
thodox semigroup with a left normal band of idempotents which is not
isomorphic to a semidirect product of a band by a group.

Finally, we turn to giving a necessary and sufficient condition, by
means of intrinsic parameters, for an E-unitary almost factorizable
orthodox semigroup to be isomorphic to a semidirect product of a band
by a group.

Theorem 4.4. For any orthodox semigroup S, the following conditions
are equivalent:

(1) S is isomorphic to a semidirect product of a band by a group,
(2) S is E-unitary, almost factorizable, and the group extension

determined by χ in (2.8) is splitting.

Proof. Recall that the group extension determined by χ is splitting
if and only if χ possesses a left inverse which is a homomorphism.

(2) ⇒ (1). Let S be an E-unitary almost factorizable orthodox
semigroup, and suppose that the group extension determined by χ is
splitting. Then there exists a left inverse ε of χ which is a homomor-
phism. In this case ξ = εβ is also a homomorphism, and the Q-product
Q(E(S),Σ(S/γ); ξ) is a semidirect product. The assertion follows by
Theorem 3.6.
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(1) ⇒ (2). Assume that S = B oH where B is a band and H is a
group. Then S is an E-unitary almost factorizable orthodox semigroup.
The congruence induced by the second projection π′ of S is σ, and so
H is isomorphic to S/σ. The argument before Theorem 3.6 implies
that ι : Σ(S/γ)→ S/σ, (λγ, ργ) 7→ (eρ)σ, where (λ, ρ) ∈ Σ(S) and e ∈
E(S), is an isomorphism, and so ι′ : Σ(S/γ) → H, (λγ, ργ) 7→ (eρ)π′,
where (λ, ρ) ∈ Σ(S) and e ∈ E(S), is also an isomorphism. Since a
semidirect product is a special Q-product, we obtain from the proof of
the direct part of Theorem 3.5 that, for any u ∈ H, we have (λu, ρu) ∈
Σ(S), where ρu and λu are defined in (3.6) and (3.7), respectively. Since
η is trivial in our case, we simply have

(a, h)ρu = (a, hu) and λu(a, h) = (ua, uh).

It is routine to check that µ : H → Σ(S), u 7→ (λu, ρu), and, conse-
quently, ε = ι′µ, are homomorphisms. Moreover, by the definition of ι′

and µ, we have

((λu)γ, (ρu)γ)ε = (((λu)γ, (ρu)γ)ι
′)µ = uµ = (λu, ρu) ,

therefore ε is a unitary left inverse of χ. Thus the group extension
corresponding to χ is, indeed, splitting. �
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