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Abstract

First we present the simplest criterion to decide that the Hopf bifurcations of the delay differential
equation x′(t) = −µf(x(t−1)) are subcritical or supercritical, as the parameter µ passes through the
critical values µk. Generally, the first Lyapunov coefficient, that determines the direction of the Hopf
bifurcation, is given by a complicated formula. Here we point out that for this class of equations, it
can be reduced to a simple inequality that is trivial to check. By comparing the magnitudes of f ′′(0)
and f ′′′(0), we can immediately tell the direction of all the Hopf bifurcations emerging from zero,
saving us from the usual lengthy calculations.

The main result of the paper is that we obtain upper and lower estimates of the periods of the
bifurcating limit cycles along the Hopf branches. The proof is based on a complete classification
of the possible bifurcation sequences and the Cooke transformation that maps branches onto each
other. Applying our result to Wright’s equation, we show that the kth Hopf branch has no folds in
a neighbourhood of the bifurcation point µk with radius 6.83 × 10−3(4k + 1).

Finally, we show how our results relate to the often required property that the nonlinearity has
negative Schwarzian derivative.

Keywords: period estimates, delay differential equation, Hopf bifurcation, supercritical, normal form

1 Introduction

The appearance of limit cycles around equilibria via Hopf bifurcations is a common phenomenon for
delay differential equations, when a parameter of the equation passes through a critical value, and a
pair of eigenvalues of the linearized system crosses the imaginary axis on the complex plane. Depending
on the nature of the nonlinearity, the Hopf bifurcation can be either supercritical or subcritical, i.e.
the bifurcating periodic solution can be stable or unstable on the center manifold. It is well known
how to determine the direction of the Hopf bifurcation for delay differential equations at least since
the book of Hassard, Kazarinoff and Wan [8]. One can use bilinear forms, center manifold reduction
(see [3, 8]), Lyapunov–Schmidt method [7] or alternatively, the theory of normal forms for functional
differential equations [4]. Based on these fundamental techniques, the literature of delay differential
equations is vast by papers where Hopf bifurcation results are shown to many particular model systems
arising from physical, engineering or biological applications. However, most of those articles provide only
the complicated formula of the first Lyapunov coefficient, which is typically hard to relate to the original
model parameters. In fact, if the reader wants to figure out the direction of the bifurcation in particular
cases, it requires almost the same effort as repeating the whole calculation of the general formula. Also,
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due to the elaborative nature of such calculations, the literature of bifurcation theory is not free of minor
mistakes or inaccuracies (some of those are discussed, for example, in [10] or [17]).

To remedy this situation, our first aim here is to derive the simplest criterion for the direction of the
bifurcations for the class of scalar delay differential equations of the special form

x′(t) = −µf(x(t− 1)), (1)

which will be then trivial to check in any specific situation. Note that the equation

z′(s) = −f(z(s− µ))

can be easily rescaled into (1) by the change of variables s = tµ and x(t) = z(s), hence in the sequel we
assume that the delay is one and µ is our bifurcation parameter. This class of equations is frequently
studied and includes such notorious examples as the equations of Wright or Ikeda. Equations of the form
(1) are often called Wright-type delay differential equations [11]. We characterize all possible sequences
of subcritical and supercritical Hopf bifurcations, and provide concrete examples to each one. The
calculations are based on the method of Faria and Magalhães [4].

It is well known for a long time, how to calculate the direction of the Hopf bifurcation for delay
differential equations. However, these calculations are very lengthy and elaborate. Here we point out
that for equations of the form (1), the complicated formula of the first Lyapunov coefficient reduces to a
very simple criterion: just by comparing the magnitudes of f ′′(0) and f ′′′(0), we can immediately tell the
direction of all the Hopf bifurcations emerging from zero. This way we obtain a complete classification
of the possible bifurcation sequences, and there is no need for any tedious computations in the future
for the bifurcation analysis of such equations. By Theorem 1, the value of the ratio f ′′′(0)/f ′′(0)2 tells
everything.

To achieve our main result, we use the formulae for the directions of the Hopf bifurcations and
combine with the method of Cooke transformation to obtain upper and lower estimates on the periods of
the bifurcating solutions. In particular, we find narrow estimates of the period function along branches,
and explore the relation between its monotonicity and the directions of the bifurcations. In general, very
little is known about how periods change along bifurcation branches of limit cycles for delay differential
equations. Our estimates are valid not only locally, but also on large intervals of parameters until the
bifurcation branches remain on the same side of the critical parameter.

For Wright’s equation with the nonlinearity f(ξ) = eξ − 1, Jaquette and van den Berg [1, 9] have
proven by rigorous numerical computation that the Hopf branch starting at π/2 has no folds, and the
period length of the bifurcating solutions is monotone increasing on the interval (π/2, π/2 + 6.83× 10−3].
Using the Cooke transform, we show the absence of folds for other branches starting at π/2 + 2kπ, k ≥ 1,
on the interval (π/2 + 2kπ, π/2 + 2kπ + 6.83× 10−3(4k + 1)].

Finally, we explore the connection between our results and the Schwarzian derivative of the nonlin-
earity, which plays a significant role in many global stability results. We show that by local bifurcations
one can not disprove the conjecture that local asymptotic stability implies global asymptotic stability for
Wright-type delay differential equations with negative Schwarzian.

2 Direction of Hopf bifurcation

Consider the scalar delay differential equation

x′(t) = −µf(x(t− 1)) =: g(xt, µ), (1)

where µ ∈ R, f is an R→ R, C3-smooth function with f(0) = 0, so it can be written as

f(ξ) = ξ +Bξ2 + Cξ3 + h.o.t.,

where B = f ′′(0)/2 and C = f ′′′(0)/6. The solution segment xt is defined by the relation xt(s) = x(t+s),
s ∈ [−1, 0]. Thus, xt is an element of the Banach space C([−1, 0],R).

Note that f ′(0) = 1 can be assumed without the loss of generality, as we can normalize it via the
parameter µ. It is known that the direction of the Hopf bifurcation depends on the terms of the Taylor
series of the nonlinearity up to order three. In this case, the direction of the Hopf bifurcation around the
zero equilibrium is determined by a relation between the coefficients B and C. To our surprise, despite
the method is well known for a much more general class of equations, we could not find a derivation of
such a simple, readily available criterion for B and C in the literature for (1), only for the first Hopf
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bifurcation in [19] and in Chapter 6 of the recent book of H. L. Smith [18], and for a different class of
equations in [6]. The main result of this Section is the general condition for the stability of the Hopf
bifurcation at any critical parameter value.

Many commonly used model equations include a mix of delayed and instantaneous terms, resulting
in a very complicated formula for the first Lyapunov coefficient. When we have only a pure delayed
term, then the characteristic equation is already significantly simplified. The critical roots and critical
parameters can now be expressed easily (see the Appendix). This allows us to derive a simple criterion
for the direction of the bifurcation.

Theorem 1. a) Equation (1) has Hopf bifurcations from the zero equilibrium at the critical parameter
values µk = π

2 + 2kπ, k ∈ Z.

b) The kth bifurcation is

• supercritical if C < H(k)B2;

• subcritical if C > H(k)B2, where H(k) = 22(4k+1)π−8
15(4k+1)π .

c) If a Hopf bifurcation of Equation (1) is

• supercritical, then the bifurcation branch starts to right if µk > 0 and left if µk < 0;

• subcritical, then the bifurcation branch starts to left if µk > 0 and right if µk < 0.

The proof is a straightforward computation following Faria and Magalhães [4]. For the sake of com-
pleteness, we included the derivation in the Appendix. The function H(k) is plotted in Figure 1.

Figure 1: Plot of H(k) = 22(4k+1)π−8
15(4k+1)π . The values are between H(0) = 22π−8

15π and H(−1) = 66π+8
45π , and

they tend to H(−∞) = H(∞) = 22
15 as k → ±∞. According to Theorem 1, when the constant C/B2 is

below H(k) for some k, the kth bifurcation is supercritical.

As we mentioned, for the special case k = 0, this result can be found in [18], page 97, which we now
state as a corollary.

Corollary 2. The Hopf bifurcation at µ0 = π
2 is supercritical if C < H(0)B2, and it is subcritical if

C > H(0)B2.

From the shape of H(k), we easily find the following.

Corollary 3. If C < H(0)B2 then every Hopf bifurcation is supercritical, if C > H(−1)B2 then every
Hopf bifurcation is subcritical.

For convenience, note that H(0) ≈ 1.3 and H(−1) ≈ 1.52. Theorem 1 and its corollaries allow us to
give a complete classification of the possible bifurcation sequences, depicted in Figure 2.
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(a) C < H(0)B2: All bifurcations are supercritical. (b) H(0)B2 < C < H(∞)B2: There exists n > 0 such that

the kth bifurcation is subcritical iff 0 ≤ k ≤ n.
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(c) C = H(∞)B2: The kth bifurcation is subcritical iff k ≥ 0. (d) H(−∞)B2 < C < H(−1)B2: There exists n < −1 such

that the kth bifurcation is subcritical iff n ≤ k ≤ −1.
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(e) C > H(−1)B2: All bifurcations are subcritical. (f) Wright’s equation

Figure 2: All possible configurations of bifurcation branches, based on Theorem 1.

3 Applications

3.1 Wright’s equation

The classical Wright–Hutchinson equation (also called delayed logistic equation)

y′(t) = −µy(t− 1)(1 + y(t)), µ > 0,

can be transformed into the form
x′(t) = −µ(ex(t−1) − 1) (2)

by the change of variable x(t) = ln(1 + y(t)), for solutions y > −1. This latter equation is of type (1)
with f(ξ) = eξ − 1, B = 1

2 , C = 1
6 . Since C ≈ 0.167 < 0.324 ≈ H(0)B2, we can apply Corollary 3 to

obtain the following fact (which was also derived in [4], page 197, and [2], page 147).

Corollary 4. In Wright’s equation, every Hopf bifurcation is supercritical.

3.2 Ikeda equation

The equation
y′(t) = − sin(y(t− µ))

arises in the modeling of optical resonator systems. By rescaling, one has the equivalent form

x′(t) = −µ sin(x(t− 1)),

which fits into (1) with f(ξ) = sin(ξ), B = 0, C = − 1
6 . Since C < 0 = H(0)B2, Corollary 3 applies.

Corollary 5. In the Ikeda equation, every Hopf bifurcation is supercritical.

3.3 A polynomial equation with criticality switching

Consider
x′(t) = −µ(x(t− 1) + x2(t− 1) + 1.44x3(t− 1)),

which is of the form (1) with f(ξ) = ξ + ξ2 + 1.44ξ3, B = 1, C = 1.44. Then H(1) < C
B2 < H(2), so the

bifurcations at µ0 and µ1 are subcritical, the others are supercritical.

3.4 A totally subcritical polynomial equation

Consider

x′(t) = −µ
(
x(t− 1) + x2(t− 1) +

22

15
x3(t− 1)

)
,

which is of the form (1) with f(ξ) = ξ + ξ2 + 22
15ξ

2, B = 1, C = 22
15 . Then C

B2 = 22
15 > H(k), for all

nonnegative integer k, so every Hopf bifurcation is subcritical for positive critical parameter values (and
supercritical for negative parameter values).
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Figure 3: The bifurcation branches of the Ikeda equation (left) and of our totally subcritical example
(right).

4 Period estimations

Throughout this section we consider µ > 0. The following idea is known in the delay differential equation
community as the Cooke transformation, which has been used for example in [15, 5]. If p(t) is a periodic
solution of equation (1) for parameter value µ = µ∗ > 0 with period T , then q(t) := p((lT + 1)t) is also
a periodic solution of equation (1) for parameter value µ = µ∗(lT + 1) with period T

lT+1 , for any l ∈ N.
This can be shown by the straightforward calculations

q′(t) = −(µ(lT + 1))f(p((lT + 1)t− lT − 1)) = −(µ(lT + 1))f(q(t− 1))

and

q

(
t+

T

lT + 1

)
= p((lT + 1)t+ T ) = p((lT + 1)t) = q(t).

Thus we can define a map

Cl : (µ, T, p(t)) 7→
(
µ(lT + 1),

T

lT + 1
, p((lT + 1)t)

)
,

where p(t) is a periodic solution of equation (1) with parameter value µ and period T .
Consider the Hopf branch of periodic solutions near the parameter value µk, k ∈ N. Let δk = 1 if the

kth bifurcation is supercritical, and −1 if the kth bifurcation is subcritical. Then, for any k, there exists
a unique local branch of periodic solutions pkη(t) parametrized by a variable µ = µk + δkη with η ∈ (0, ηk)

for some ηk > 0. The minimal period of pkη is denoted by T kη . As calculated in the Appendix, at the

critical parameter value µk = π
2 + 2kπ = 4k+1

2 π, the critical eigenvalue is iωk = i 4k+1
2 π. The linearized

equation has a center at critical parameter values, having periodic solutions with minimal period

T k0 :=
2π

ωk
=

4

4k + 1
.

Theorem I. on page 14 of [8] implies that T kη is a continuous function of η, and T kη → T k0 as η → 0.

Proposition 6. Let k, l ∈ N. Then, near the bifurcation points, Cl maps the kth bifurcation branch to
the (k+l)th bifurcation branch.

Proof. Applying the continuous map Cl for the critical parameter value and period as the limits of µk+δkη
and T kη , as η → 0, we obtain

µk(lT k0 + 1) =
4k + 1

2
π

(
l

4

4k + 1
+ 1

)
=
π

2
(4(k + l) + 1) = µk+l

and
T k0

lT k0 + 1
=

1

l + 4k+1
4

=
4

4l + 4k + 1
=

2π

ωk+l
= T k+l0 .

By the continuity of the periods T kη and T k+lη as functions of η, and the uniqueness of local branches
(see [3, Theorem X.2.7]), we find that the Cooke transformation maps Hopf bifurcation branches to Hopf
bifurcation branches.

5



Theorem 7. If k ≥ 0 and C < H(k)B2 then, for all l ≥ 1, we have the following estimate on the period
of the Hopf solution of equation (1) near µk:

T kη >
4− 2η

lπ

4k + 1 + 2η
π

.

Proof. The assumptions of the theorem imply that the kth bifurcation is supercritical, then δk = 1, and
by Corollary 2, all the (k + l)th bifurcations (l ∈ N) are supercritical as well. Then, taking Proposition
6 into account, we get

(µk + η)(lT kη + 1) > µk+l, (3)

thus

T kη >

(
µk+l
µk + η

− 1

)
l−1 =

4− 2η
lπ

4k + 1 + 2η
π

.

Theorem 8. If C ≥ H(∞)B2 and k ≥ 0 then, for all l ≥ 1, we have the following estimate on the period
of the Hopf solution of equation (1) near µk:

T kη <
4 + 2η

lπ

4k + 1− 2η
π

.

Proof. Now all the bifurcations are subcritical, so δk = δk+l = −1 for any k, l ∈ N, and by Proposition 6,

(µk − η)(lT kη + 1) < µk+l,

thus

T kη <

(
µk+l
µk − η

− 1

)
l−1 =

4 + 2η
lπ

4k + 1− 2η
π

.

Theorem 9. If H(0)B2 ≤ C < H(∞)B2 and k ≥ 0, then define

n := max

{
m ∈ N0 : C >

22(4m+ 1)π − 8

15(4m+ 1)π
B2

}
.

If k < n then near µk we have the estimates

4 + 2η
(n−k+1)π

4k + 1− 2η
π

< T kη <
4 + 2η

(n−k)π

4k + 1− 2η
π

.

If k = n then we only have the lower estimate

T kη >
4 + 2η

π

4k + 1− 2η
π

.

Proof. Assume that k ≤ n. Then the kth bifurcation is subcritical and δk = −1. First, suppose that
l1 > 0 and the (k + l1)th bifurcation is supercritical. Then

(µk − η)(l1T
k
η + 1) > µk+l1 ,

thus

T kη >
4 + 2η

l1π

4k + 1− 2η
π

.

Now we choose l1 to be the minimal index which still gives a supercritical bifurcation, that is l1 := n−k+1.
Next, suppose that the (k + l2)th bifurcation is subcritical. This is only possible if k < n. Then

(µk − η)(l2T
k
η + 1) < µk+l2 ,

thus

T kη <
4 + 2η

l2π

4k + 1− 2η
π

.

Finally, choose l2 to be the maximal index that still gives subcritical bifurcation, which is l2 := n−k.
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Figure 4: Narrow estimates on the period of the 0th branch of Example 3.3 by Theorem 9 (red dashed
curves) compared to numerically obtained periods (blue solid curve).

In some situations this theorem provides very sharp estimations of the period function, which is
illustrated in Figure 4.

Corollary 10. If in equation (1) the kth Hopf bifurcation is subcritical for some k ≥ 0, and the periods
satisfy T kη < T k0 near µk, then for all l ≥ 1 the (k + l)th Hopf bifurcation is also subcritical.

Proof. If the kth Hopf bifurcation is subcritical, then

(µk − η)(lT kη + 1) < µk(lT k0 + 1) = µk+l.

This means that the Cooke transformation maps the kth branch to the left side of µk+l, thus the (k+ l)th
bifurcation is also subcritical.

In the situation H(0)B2 < C < H(∞)B2 (see Figure 2.b.), we can infer the monotonicity of the
period functions at the subcritical bifurcations, as the next corollary shows.

Corollary 11. If in equation (1) the kth Hopf bifurcation is subcritical for some k ≥ 0, but the (k+ l)th
Hopf bifurcation is supercritical for any l ≥ 1, then T kη > 0 is monotone increasing for small η.

Proof. If the kth Hopf bifurcation is subcritical, but the (k + l)th is supercritical, then for η1 < η2 we
have

(µk − η1)(lT kη1 + 1) < (µk − η2)(lT kη2 + 1).

This is possible only if T kη1 < T kη2 .

4.1 Application to Wright’s equation

There is a huge literature about the dynamics of equation (1) when f(ξ) = eξ − 1, and the related
conjectures of Wright and Jones (now proven theorems, see [1, 9]). In particular, Jaquette [9] has shown
the following.

Theorem 12 (Jones’ conjecture). For every µ > π/2 there exists a unique slowly oscillating periodic
solution to (2).

The 0th branch of (2) is formed by these unique slowly oscillating periodic solutions. The following
conjecture is stated in [9, Conjecture 7.1].

Conjecture 13. The period length of slowly oscillating periodic solutions of (2) increases monotonically
in µ.

The monotonicity was shown for µ ∈ (π/2, π/2 + 6.83 × 10−3] by Jaquette and van den Berg [1].
Applying our result, we can formulate the following theorem.

Theorem 14. The kth Hopf bifurcation branch of Wright’s equation (2) has no folds on the parameter
interval (π/2 + 2kπ, π/2 + 2kπ + 6.83× 10−3(4k + 1)], and the period length increases monotonically on
this interval.
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Proof. For k = 0, we have the results of [1, 9], so there exists a unique periodic orbit on the 0th branch
for each parameter value π/2 + η, η ∈ (0, 6.83 × 10−3]. Moreover, its period T 0

η is increasing in η, and
T 0
η → 4 as η → 0.

Let k ≥ 1. Using the Cooke transform Ck, as the 0th branch is mapped onto the kth branch, the
parameter π/2 + η is mapped to µ(η) = (π/2 + η)(kT 0

η + 1). This is an increasing function of η with limit

lim
η→0

µ(η) =
π

2
(4k + 1) =

π

2
+ 2kπ.

Using T 0
6.83×10−3 > 4 (see [16]), we find from the Cooke transform that

µ
(
6.83× 10−3

)
=
(π

2
+ 6.83× 10−3

) (
kT 0

6.83×10−3 + 1
)
≥ π

2
+ 2kπ + 6.83× 10−3(4k + 1).

Since the 0th branch has no fold on (π/2, π/2+6.83×10−3], and the Cooke transform maps this parameter
interval monotone increasingly onto (π/2 + 2kπ, π/2 + 2kπ + 6.83× 10−3(4k + 1)], the kth Hopf branch
has no folds on this interval as well. The period on the kth branch for parameter µ(η) is T 0

η /(kT
0
η + 1).

Choosing η1 and η2 such that µ(η1), µ(η2) ∈ (π/2 + 2kπ, π/2 + 2kπ + 6.83× 10−3(4k + 1)] and η1 < η2,
we have T 0

η1 < T 0
η2 and

T 0
η2

kT 0
η2 + 1

−
T 0
η1

kT 0
η1 + 1

=
kT 0

η1T
0
η2 + T 0

η2 − kT
0
η1T

0
η2 − T

0
η1

(kT 0
η1 + 1)(kT 0

η2 + 1)
=

T 0
η2 − T

0
η1

(kT 0
η1 + 1)(kT 0

η2 + 1)
> 0,

hence the period is increasing along the kth branch as well.

Since Jones’ conjecture has been proven, it is now known that there are no folds on the 0th Hopf branch
of slowly oscillating periodic solutions of Wright’s equation. Furthermore, isolas of slowly oscillating
periodic solutions are excluded as well. By the Cooke transform, we can also exclude isolas of rapidly
oscillatory periodic solutions. However, this is not sufficient to show there are no folds in the branches of
rapidly oscillating periodic solutions [9]. Our Theorem 14 above shows the non-existence of folds on some
intervals of the parameter on the Hopf branches of rapidly oscillatory solutions, using the monotonicity
of the period established in [9] for a small interval of the 0th branch. Conjecture 13 would imply the
absence of folds along all branches.

5 Schwarzian derivative and the direction of the Hopf bifurca-
tion

The Schwarzian derivative of a C3 function f is defined as

(Sf)(ξ) =
f ′′′(ξ)

f ′(ξ)
− 3

2

(
f ′′(ξ)

f ′(ξ)

)2

at points ξ where f ′(ξ) 6= 0. This quantity plays an important role in many results regarding the global
dynamics of difference equations, which can be extended to delay differential equations in various cases
(see [11, 12, 13, 14] and references thereof). A global stability conjecture was formulated in [11], stating
that the zero solution of (1) is globally asymptotically stable whenever it is locally asymptotically stable,
Sf < 0, and some other technical conditions hold (for related conjectures, see [12]). An obvious way
to disprove this global stability conjecture would be the following: find a nonlinearity f with Sf < 0,
where the Hopf bifurcation of (1) is subcritical at µ0. This would provide a counterexample. Since both
the directions of the bifurcation and the sign of the Schwarzian are determined by the derivatives of the
nonlinearity up to order three, in view of the results of the previous sections, it is most natural to make
a comparison to check whether the existence of such a counterexample is possible.

Corollary 15. If Sf < 0, then all Hopf bifurcations are supercritical. Furthermore, if f ′′(0) = 0, then
for any k, the kth bifurcation is supercritical if and only if Sf(0) < 0.

Proof. From the definition, it is easy to evaluate Sf(0) = 6(C −B2), thus Sf < 0 implies Sf(0) < 0 and
C < B2. By Corollary 3, all Hopf bifurcations are supercritical. In the special case f ′′(0) = 0, we have
B = 0 and Sf(0) = 6C, thus both the sign of the Schwarzian and the direction of the bifurcation are
determined by the sign of C.

We found that it is not possible to construct a counterexample to the conjecture of Liz et al. by means
of a subcritical Hopf bifurcation.
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Appendix

Proof of Theorem 1. a) The linearization of equation (1) is

x′(t) = −µx(t− 1). (4)

From the exponential Ansatz x(t) = eλt, we get

λeλt = −µeλ(t−1),

and the characteristic equation is
λ = −µe−λ.

To find the Hopf bifurcation points, we substitute λ = iω, ω ∈ R \ {0}, and write

iω = −µe−iω = −µ cosω + iµ sinω.

Taking real and imaginary parts, we obtain the following system of real equations

0 = µ cosω, ω = µ sinω.

From the first equation, we get ω = π
2 + nπ, n ∈ Z. Substituting this into the second equation we

have
π

2
+ nπ = µ sin

(π
2

+ nπ
)
.

We distinguish two cases:

• n = 2k, k ∈ Z, in which case we find

π

2
+ 2kπ = µ sin

(π
2

+ 2kπ
)

= µ;

• n = 2l + 1, l ∈ Z, in which case we find

π

2
+ (2l + 1)π = µ sin

(π
2

+ (2l + 1)π
)

= −µ,

which is equivalent to
π

2
− (2l + 2)π = µ.

We find that the via k = −(l + 1), the two cases can be treated together, and for the critical values
we may just write µk = π

2 + 2kπ = 4k+1
2 π, k ∈ Z. For each µk there is a pair of critical eigenvalues

±iωk, where ωk = 4k+1
2 π.

b) We follow the procedure developed in [4], using the parametrization µ = µk + δkη as in Section 4. Let
L and F be defined by the relation

L(δkη)xt + F (xt, δkη) = −(µk + δkη)f(x(t− 1)),

where xt is the solution segment defined by xt(θ) = x(t + θ) for θ ∈ [−1, 0]. Here, L(δkη) is a linear
operator from C([−1, 0],R) to R, F is an operator from C([−1, 0],R)×R to R with F (0, δkη) = 0 and
D1F (0, δkη) = 0. As equation (1) depends on the parameter linearly, we write

L(δkη) = L0 + δkηL1,

and, for (x1, x2, x3, x4) ∈ R4,

F (x1e
iωkθ + x2e

−iωkθ + x3 · 1 + x4e
2iωkθ, 0)

= B(2,0,0,0)x
2
1 +B(1,1,0,0)x1x2 +B(1,0,1,0)x1x3 +B(0,1,0,1)x2x4 +B(2,1,0,0)x

2
1x2 + . . .

Since µk = ωk = 4k+1
2 π, the equality eiωk = i holds. For φ ∈ C([−1, 0],R) we have

L0(φ) = −µkφ(−1) = −4k + 1

2
πφ(−1).
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Hence,

L0(1) = −4k + 1

2
π,

L0(θeiωkθ) = −4k + 1

2
π
(
−e−i

4k+1
2 π

)
= −i4k + 1

2
π,

L0(e2iωkθ) = −4k + 1

2
π
(
e−2i

4k+1
2 π

)
=

4k + 1

2
π,

and the expansion of F can be written as

F (x1e
iωkθ + x2e

−iωkθ + x3 · 1 + x4e
2iωkθ, 0)

= −4k + 1

2
π
(
B(x1(−i) + x2i+ x3 − x4)2 + C(x1(−i) + x2i+ x3 − x4)3 + h.o.t.

)
.

Then the B(a,b,c,d) coefficients are

B(2,0,0,0) =
4k + 1

2
πB, B(1,1,0,0) = −(4k + 1)πB, B(1,0,1,0) = (4k + 1)πBi,

B(0,1,0,1) = (4k + 1)πBi, B(2,1,0,0) =
3

2
(4k + 1)πCi.

According to [4] (see formula (3.18) and Theorem 3.20), the direction of the bifurcation is determined
by the sign of

K = Re

[
1

1− L0(θeiωkθ)

(
B(2,1,0,0) −

B(1,1,0,0)B(1,0,1,0)

L0(1)
+
B(2,0,0,0)B(0,1,0,1)

2iωk − L0(e2iωk)

)]
.

We shall use the notation a ∼ b whenever a = qb for some q > 0. Substituting all terms into K, we
need to find the sign of the real part of

1

1 + i 4k+1
2 π

(
3

2
(4k + 1)πCi− −(4k + 1)πB(4k + 1)πBi

− 4k+1
2 π

+
4k+1

2 πB(4k + 1)πBi

i(4k + 1)π − 4k+1
2 π

)

=
(2− (4k + 1)πi)

2(1 + (4k+1)2

22 )
(4k + 1)π

(
3

2
Ci− 2B2i+

(−2i− 1)B2i

5

)
∼(2− (4k + 1)πi)(4k + 1)

(
3

2
Ci+

2

5
B2 − 11

5
B2i

)
.

The latter expression has real part

(4k + 1)

[
(4k + 1)π

3

2
C +

4

5
B2 − 11

5
(4k + 1)πB2

]
∼ C −H(k)B2.

c) To determine the direction a pair of characteristic roots crosses the imaginary axis at a bifurcation
point, we differentiate the real part with respect to the parameter. Let us consider a parameter
dependent solution of the characteristic equation λ = −µe−λ, written as λ(µ) = α(µ) + iω(µ), where
α and ω are the real and imaginary parts. Then we have

α+ iω = −µe−α−iω = −µe−α(cosω − i sinω).

Separating real and imaginary parts, we get

α = −µe−α cosω, ω = µe−α sinω.

Differentiating these equations with respect to µ, we find

α′ = −e−α cosω − µe−α(−α′) cosω − µe−α(− sinω)ω′,

ω′ = e−α sinω + µe−α(−α′) sinω + µe−α cos(ω)ω′.

10



Assuming that the root is critical, α(µk) = 0 and ω(µk) = ωk. As we have seen in part a), in the
critical case cosωk = 0 and sinωk = 1. Then, evaluating the derivatives at µk, we obtain

α′ = µkω
′, ω′ = 1− µkα′.

Now we substitute ω′ into the first equation, and express α′ as

α′(µk) =
µk

1 + µ2
k

.

Hence, α′(µk) and µk has the same sign. This means that, at a Hopf bifurcation, a pair of characteristic
roots crosses the imaginary axis from left to right if and only if µk > 0. Hence the branch of a
supercritical Hopf bifurcation starts to the right if and only if µk > 0, and the subcritical case is the
opposite.
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