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Abstract

We consider a differential equation with a state-dependent delay motivated by a
queueing process. The time delay is determined by an algebraic equation involving
the length of the queue for which a discontinuous differential equation holds. The
new type of state-dependent delay raises some problems that are studied in this
paper. We formulate an appropriate framework to handle the system, and show
that the solutions define a Lipschitz continuous semiflow in the phase space. The
second main result guarantees the existence of slowly oscillating periodic solutions.
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1 Introduction

We consider a system which is composed of a delay differential equation and auxiliary
equations defining the delay. The delay differential equation satisfies a negative feedback
condition analogously to earlier works by Mallet-Paret and Nussbaum [20, 21], Arino,
Hadeler, Hbid and Magal [2, 19], Krisztin and Arino [14], Walther [31, 33, 30, 29]. In [20,
29] the state-dependent delay was an explicitly given function (i.e., no auxiliary equation).
Walther [31, 30] studied problems where the state-dependent delay was defined by an
algebraic relation, and in a suitable phase space it was possible to eliminate this auxiliary
equation. Arino, Hadeler, Hbid, Magal [2, 19] and Hu, Wu [11] considered an equation
where the auxiliary equation for the delay was given by an ordinary differential equation.
Here we study a differential equation with a state-dependent delay where the delay is
defined by two auxiliary equations: an algebraic equation and a differential equation with
a discontinuous right hand side. The considered system is interesting from the theoretical
point of view since previous results do not seem applicable here. On the other hand,
the system is a prototype of rate control problems with delays appearing naturally in
queueing processes.

The particular model, that motivated our study, was introduced by Ranjan, La and
Abed in [26, 25]. The problem is specified for a simple computer network, however,
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analogous models appear, e.g., in more general computer networks, in road networks,
in biological networks, or in general in those processes where a bottleneck phenomenon
slows down the performance or capacity of a system, see, e.g., [27, 5, 8]. The model is
a fluid model, although data are usually discrete. When we talk about data transfer, we
can think of a liquid flowing in a pipe. In the derivation of the model sometimes it is
helpful to use a discrete version of the phenomenon and to mention units of data. In
these cases the continuous model equations are obtained by taking limits. We hope this
does not cause confusion. So, consider a network containing a single user and a single
server. The user’s transmission rate satisfies the bound 0 < a ≤ x(t) ≤ b, where b is a
user-specific physical limitation, and the lower bound a is due to the fact that the user
needs to probe the congestion level of the network by continuously transmitting data. The
server processes the incoming data by the capacity c ∈ (a, b). Kelly [12] introduced the
utility U(x) and the price p(x) per unit flow of the processing, when the rate is x. Under
natural conditions on the functions U(·) and p(·), there is an optimal rate x∗ ∈ (a, c)
(balancing between the utility and the price of processing) as the unique maximum of the
expression U(x)−

∫ x
0
p(y) dy subject to the constraint 0 < x ≤ c, see Kelly et al. [13]. In

addition, [13] proposed an end user rate control algorithm as the differential equation

ẋ(t) = κ
[
x(t)U ′(x(t))− x(t)p(x(t))

]
(1.1)

where xU ′(x) is the price per unit time the user is willing to pay for the processing,
xp(x) is the price charged by the server, κ > 0 is a gain parameter. The solutions of
equation (1.1) converge monotonically to x∗ as t→∞. On the other hand, nonmonotone
convergence and nonconvergent oscillation around x∗ arise in some rate control problems.
Equation (1.1) neglects the feedback delays appearing naturally in the system.

The rate control model of Ranjan, La and Abed [26, 25] takes the feedback delays into
account. As the rate x(t) can be larger than the capacity of the server, the data arriving
at the server may form a single waiting line (a queue) before processing. Let y(t) denote
the length of the queue at time t. Suppose that it is bounded from above by q > 0, and
the units of data reaching the queue with length q are lost. Then, assuming that the
transmission time from the user to the server is r0 ≥ 0, it is natural that for the length
y(t) of the queue the differential equation

ẏ(t) =


x(t− r0)− c if 0 < y(t) < q,

[x(t− r0)− c]+ if y(t) = 0,

−[x(t− r0)− c]− if y(t) = q

(1.2)

is satisfied. Here, equation (1.2) is required to hold almost everywhere, and u+ =
max{u, 0}, u− = max{−u, 0} denote the positive and negative parts of u, respectively.

Suppose that a unit of data, whose processing was completed and the user received an
acknowledgement about it at time t, arrived at the queue τ(t) time earlier, i.e., at time
t − τ(t), and found a queue with length y(t − τ(t)). As the capacity of the server is c,
the given unit of data spent waiting time z(t) = (1/c)y(t − τ(t)) in the queue before its
processing started. Let r1 denote the sum of the processing time and the transmission
time from the server to the user. Then τ(t) = z(t) + r1, and this gives the algebraic
equation

z(t) =
1

c
y(t− z(t)− r1) (1.3)

between y and z.
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With the waiting time z(t) and the transmission delays r0, r1, the user at time t
receives an acknowledgement from the server about the processing of that unit of data
which was sent at time t − r0 − z(t) − r1. The server determines a price for a unit rate
when it arrives at the server, i.e., at time t − z(t) − r1. When the processing of a unit
ends, the server sends a signal to the user including the identification of the processed
unit and the price information p(x(t− z(t)− r1)). Then the user is able to estimate the
price for the rate of data sent at t− r0−z(t)− r1 as x(t− r0−z(t)− r1)p(x(t−z(t)− r1)).
This led Ranjan, La and Abed [26, 25] to the rate control equation

ẋ(t) = κ
[
x(t)U ′(x(t))− x(t− r0 − z(t)− r1)p(x(t− z(t)− r1))

]
(1.4)

with a gain parameter κ > 0. See figure 1. For similar models we refer to [1, 3].

processinguser userqueue

server

timett-r1t-z(t)-r1t-r0-z(t)-r1

r0
z(t) r1

Figure 1: The process in time.

In this paper we consider rate control equations (like (1.4)) with delay, where the
delay is determined by two auxiliary equations, by (1.3) and (1.2), or only by (1.2).
The primary aim of this paper is to find a suitable framework to study the above types
of rate control systems. We define a phase space where the corresponding initial value
problem has a unique maximal solution. The solutions define a continuous semiflow,
and the solution operators are Lipschitz continuous. We believe that this approach can
be extended to handle a wide class of systems modeling networks with queueing delays.
Observe that neither the classical results for equations with constant delay [7, 9] nor the
recently developed results for equations with state-dependent delay [10, 29] are applicable
here.

The papers of Ranjan et al. [17, 15, 16, 23, 24, 25, 26] and [1, 3] consider similar
systems, starting from discrete ones, through ordinary and delay differential equations
with constant or state-dependent delays, to general network systems. They examine
these models from the engineering point of view, comparing the different rate control
schemes, like the TCP (transmission control protocol) and its modifications. In these
papers, they prove local and global stability of equilibria, show bifurcations, and plot
numerical solutions related to their results. However, as far as we know, they do not
study the problem of existence, uniqueness, continuous dependence with a mathematical
rigor.

The secondary aim is to apply the developed framework, and to show that the rate
control defined by System (1.4), (1.2), (1.3) may lead to a slowly oscillating periodic rate
around the optimal rate x∗, provided that the stationary solution x = x∗, y = 0, z = 0 is
unstable and r0 = 0. This answers affirmatively a conjecture of Ranjan and his coauthors
[24, 22].

Before giving an overview on the main steps toward the results, some notation is
introduced. N denotes the set of positive integers, R and C stand for the set of real and
complex numbers, respectively. For n ∈ N, Rn is the n-dimensional Euclidean space with
norm | · |. For a closed and bounded interval I let CI denote the Banach space C(I,R)
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equipped with the norm ‖ϕ‖I = maxs∈I |ϕ(s)|. For Banach spaces E , F with norms ‖ · ‖E ,
‖ · ‖F , the norm on E × F is ‖(u, v)‖ = ‖u‖E + ‖v‖F , u ∈ E , v ∈ F .

Set r = r0 + r1 + q/c > 0 as an upper bound for the delays. If I ⊆ R is an interval,
u : I → R is continuous, r > 0, t and t − r are in I, then ut ∈ C[−r,0] is defined by
ut(s) = u(t+ s), s ∈ [−r, 0].

For a Lipschitz continuous ϕ : I → R, defined on the interval I, let

lip(ϕ) = sup
s∈I, t∈I, s<t

∣∣∣∣ϕ(t)− ϕ(s)

t− s

∣∣∣∣ ∈ [0,∞) and

slope(ϕ) =

{
ϕ(t)− ϕ(s)

t− s
: s ∈ I, t ∈ I, s 6= t

}
⊆ R.

First we consider a slightly more general system than (1.4), (1.2), (1.3), that is, in the
equation we allow more general dependence on the length of the queue than that of (1.4),
(1.2), (1.3), and equation (1.3) may or may not hold. Consider the equation

ẋ(t) = F (xt, yt) (1.5)

together with (1.2) in the phase space X×Y where X, Y and F are defined as follows. An
upper bound K > 0 for the absolute value of the right hand side of equation (1.5) comes
from the nature of the problem. Then, by x(t) ∈ [a, b] and the bound K, the subset

X =
{
ϕ ∈ C[−r,0]

∣∣ ϕ([−r, 0]) ⊆ [a, b], lip(ϕ) ≤ K
}

of C[−r,0] will contain all possible segments xt. Analogously, by y(t) ∈ [0, q], x(t) ∈ [a, b]
and equation (1.2), for the segments yt, it is natural to introduce the subset

Y =
{
ψ ∈ C[−r,0]

∣∣ ψ([−r, 0]) ⊆ [0, q], slope(ψ) ⊆ [a− c, b− c]
}

of C[−r,0]. On X ⊂ C[−r,0], Y ⊂ C[−r,0], X × Y ⊂ C[−r,0] × C[−r,0] we use the induced
subspace topologies and the corresponding norms. By the Arzelà–Ascoli theorem, X, Y
and X × Y are compact subsets of C[−r,0] and C[−r,0] × C[−r,0], respectively. Assume that
the map F : X × Y → R has the following properties:

(F1) there exists an L > 0 such that, for all ϕ1, ϕ2 ∈ X, ψ1, ψ2 ∈ Y ,∣∣F (ϕ1, ψ1)− F (ϕ2, ψ2)
∣∣ ≤ L

(∥∥ϕ1 − ϕ2
∥∥
[−r,0] +

∥∥ψ1 − ψ2
∥∥
[−r,0]

)
;

(F2) max(ϕ,ψ)∈X×Y |F (ϕ, ψ)| ≤ K;

(F3) there exists r2 ∈ (0, r1] such that F (ϕ, ψ1) = F (ϕ, ψ2) provided ϕ ∈ X, ψ1 ∈ Y ,
ψ2 ∈ Y , and ψ1|[−r,−r2] = ψ2|[−r,−r2];

(F4) F (ϕ, ψ) > 0 if ϕ ∈ X, ψ ∈ Y , ϕ(0) = a, and F (ϕ, ψ) < 0 if ϕ ∈ X, ψ ∈ Y and
ϕ(0) = b.

A solution of System (1.5), (1.2) in the phase space X×Y on [−r, ω), ω ≤ ∞, with initial
condition x0 = ϕ ∈ X, y0 = ψ ∈ Y is a pair of functions

x = xϕ,ψ : [−r, ω)→ R and y = yϕ,ψ : [−r, ω)→ R

such that
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(i) xt ∈ X for all t ∈ [0, ω), x0 = ϕ;

(ii) x is differentiable on (0, ω);

(iii) yt ∈ Y for all t ∈ [0, ω), y0 = ψ;

(iv) equation (1.5) holds on (0, ω);

(v) equation (1.2) holds almost everywhere in (0, ω).

The solution (x, y) = (xϕ,ψ, yϕ,ψ) on [−r, ω) is called maximal if any other solution (x̂, ŷ)
with x̂0 = ϕ, ŷ0 = ψ is a restriction of (x, y).

In section 3 we show that, under hypotheses (F1)–(F4), for each (ϕ, ψ) ∈ X × Y ,
system (1.5), (1.2) has a unique maximal solution

(
xϕ,ψ, yϕ,ψ

)
: [−r,∞) → R2. The

solutions define the continuous semiflow

Φ : [0,∞)×X × Y 3 (t, ϕ, ψ) 7→
(
xϕ,ψt , yϕ,ψt

)
∈ X × Y,

and, for each t ≥ 0, the solution operators Φ(t, ·, ·) : X × Y → X × Y are Lipschitz
continuous (theorem 3.4). In order to sketch the main steps of the proof, let (ϕ, ψ) ∈ X×Y
be given. As, by (F3), the value of F (ϕ, ψ) does not depend on ψ

∣∣
[−r2,0]

, a standard

contraction argument yields T ∈ (0, r2] and a unique x : [−r, T ] → R so that equation
(1.5) holds on (0, T ), for arbitrary extension of y0 = ψ to y : [−r, T ] → R. Next we
redefine y : [−r, T ] → R on (0, T ] such that yt ∈ Y for all t ∈ [0, T ], and equation (1.2)
holds almost everywhere on [0, T ] with x : [−r, T ] → R obtained in the first step. In
order to appropriately redefine y : [−r, T ]→ R on [0, T ], we extend the right hand side of
(1.2) to an upper semicontinuous multivalued map, and apply a standard result from [6]
for differential inclusions. These two steps combined give a unique solution (xϕ,ψ, yϕ,ψ)
on [−r, T ]. By the method of steps the solution can be uniquely extended to a maximal
solution on some [−r, ω). Global existence, i.e., ω =∞, follows from (F4).

In order to see that System (1.4), (1.2), (1.3) is a particular case of System (1.5), (1.2)
introduce Z = [0, q/c] ⊂ R as a state space for the variable z(t). A crucial fact is the
existence of a unique Lipschitz continuous map (lemma 3.5) σ : Y → Z, with Lipschitz
constant 1/a, such that

σ(ψ) =
1

c
ψ(−σ(ψ)− r1) (ψ ∈ Y ).

Then, for a solution (x, y) : [−r,∞)→ R2 of System (1.5), (1.2) in the phase space X×Y ,
defining z(t) = σ(yt), t ≥ 0, equation (1.3) is always satisfied for all t ≥ 0.

Define a map G : X × Z → R such that

(G1) there exists an LG > 0 such that, for all ϕ1, ϕ2 ∈ X, ζ1, ζ2 ∈ Z,∣∣G(ϕ1, ζ1)−G(ϕ2, ζ2)
∣∣ ≤ LG

(∥∥ϕ1 − ϕ2
∥∥
[−r,0] +

∣∣ζ1 − ζ2∣∣) ;

(G2) max(ϕ,ζ)∈X×Z |G(ϕ, ζ)| ≤ K;

(G3) G(ϕ, ζ) > 0 if ϕ ∈ X, ζ ∈ Z, ϕ(0) = a, and G(ϕ, ζ) < 0 if ϕ ∈ X, ζ ∈ Z and
ϕ(0) = b
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hold. If we define F by

F : X × Y 3 (ϕ, ψ) 7→ G(ϕ, σ(ψ)) ∈ R,

then it is straightforward to check that hypotheses (F1)–(F4) are satisfied provided LG ≤
Lmin{1, a}. In this case System (1.5), (1.2) is equivalent to the system composed of the
equations

ẋ(t) = G(xt, z(t)), (1.6)

(1.2) and (1.3). Then, in the phase space X × Y , for each (ϕ, ψ) ∈ X × Y , System (1.6),
(1.2), (1.3) has the unique solution xϕ,ψ[−r,∞)→ R, yϕ,ψ : [−r,∞)→ R, zϕ,ψ : [0,∞)→
R where

(
xϕ,ψ, yϕ,ψ

)
is the solution of System (1.5), (1.2) with the above choice of F , and

zϕ,ψ(t) = σ(yϕ,ψt ), t ≥ 0.
Defining the map G as

G : X × Z 3 (ϕ, ζ) 7→ κ
[
ϕ(0)U ′(ϕ(0))− ϕ (−ζ − r0 − r1) p (ϕ (−ζ − r1))

]
∈ R, (1.7)

System (1.4), (1.2), (1.3) will be a particular case of System (1.6), (1.2), (1.3), see section
5.

In section 3 we show that System (1.6), (1.2), (1.3) can be studied not only in the
phase space X × Y , but also in X × Z with a different notion of solution. For given
(ϕ, ζ) ∈ X × Z, the pair of functions x : [−r,∞)→ R, z : [0,∞)→ R is called a solution
of System (1.6), (1.2), (1.3) in the phase space X×Z if xt ∈ X and z(t) ∈ Z for all t ≥ 0,
x0 = ϕ, z(0) = ζ, x is differentiable and equation (1.6) holds on (0,∞), moreover, there
exists a function y : [−r,∞) → R with yt ∈ Y , z(t) = σ(yt) for all t ≥ 0, and equation
(1.2) is satisfied almost everywhere on [−ζ − r1,∞).

The key technical result (see section 3) to show that System (1.6), (1.2), (1.3) is well
posed in X × Z is that there is a unique Lipschitz continuous map γ : X × Z → Y so
that ψ = γ(ϕ, ζ) satisfies ψ(s) = cζ for s ∈ [−r,−ζ − r1], and equation (1.2) holds with
x(t) = ϕ(t), y(t) = ψ(t) a.e. in [−ζ − r1, 0]. In particular, ζ = (1/c)ψ(−ζ − r1). This
means that the past of the length of the queue (that is ψ ∈ Y ) can be recovered from the
past of the rate (that is ϕ ∈ X) and from the present waiting time (that is ζ ∈ Z). The
maps

h : X × Z 3 (ϕ, ζ) 7→ (ϕ, γ(ϕ, ζ)) ∈ X × Y, k : X × Y 3 (ϕ, ψ) 7→ (ϕ, σ(ψ)) ∈ X × Z

are Lipschitz continuous, h is injective, and k ◦ h = idX×Z , h ◦ k
∣∣
h(X×Z) = idh(X×Z). Then

(see theorem 3.10), for each (ϕ, ζ) ∈ X×Z, there exists a unique solution xϕ,ζ : [−r,∞)→
R, zϕ,ζ : [0,∞)→ R of System (1.6), (1.2), (1.3) in the phase space X × Z satisfying the
initial condition xϕ,ζ0 = ϕ, zϕ,ζ(0) = ζ. Moreover,

Ψ : [0,∞)×X × Z 3 (t, ϕ, ζ) 7→
(
xϕ,ζt , zϕ,ζ(t)

)
∈ X × Z

is a continuous semiflow on X × Z, and Ψ(t, ϕ, ζ) = k(Φ(t, h(ϕ, ζ))) for all t ≥ 0.
In the second part of the paper we study a particular system including the model of

Ranjan et al. [26, 25], and show that the optimal equilibrium may be unstable, and in
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that case a slowly oscillatory periodic solution appears. Namely, we consider the system

v̇(t) = −f(v(t))− g(v(t− z(t)− 1)) (1.8)

ẏ(t) =


v(t)− d if 0 < y(t) < q

[v(t)− d]+ if y(t) = 0

−[v(t)− d]− if y(t) = q

(1.9)

z(t) =
1

c
y(t− z(t)− 1) (1.10)

with reals c, q as before, and A < 0 < d < B, and nonlinearities f, g in C1([A,B],R)
satisfying 0 ≤ f(ξ)/ξ ≤ f1, 0 < g(ξ)/ξ ≤ g1 for all ξ ∈ [A,B] \ {0} for some f1 ≥ 0,
g1 > 0.

Assume r0 = 0, r1 = 1 in equation (1.4). Condition r0 = 0 guarantees a single delay
in equation (1.4), r1 = 1 can be achieved by rescaling the time. Then, under natural
conditions on U, p in equation (1.4), the rate control System (1.4), (1.2), (1.3) will be a
particular case of System (1.8), (1.9), (1.10), see Sections 4–5.

Under suitable conditions on f, g, see section 4, proposition 4.1 shows that System
(1.8), (1.9), (1.10) is well posed in the phase space X × Z where

X =
{
ϕ ∈ C[−r,0]

∣∣ ϕ([−r, 0]) ⊆ [A,B], lip(ϕ) ≤ K1

}
,

and r = 1 + q/c, K0 = (f1 + g1) max{−A,B}, K1 = rK0.
A solution (v, z) of System (1.8), (1.9), (1.10) is called slowly oscillatory if for any two

zeros t1, t2 of v with t1 < t2 the inequality z(t2) + 1 < t2− t1 holds. This means that the
distance between consecutive zeros of v is larger than the delay.

Inspired by [20] and [19], introduce

W =
{

(ϕ, ζ) ∈ X × Z
∣∣∣ ϕ∣∣

[−r,−ζ−1] ≡ 0, s 7→ ϕ(s)ef1s is nondecreasing, ϕ(0) > 0
}

and W0 = W ∪ {(0, 0)}. Then, for each (ϕ, ζ) ∈ W , the solution v = vϕ,ζ : [−r,∞)→ R,
z = zϕ,ζ : [0,∞) → R is slowly oscillatory with an infinite number of zeros of v. The
second zero t2 of v in (0,∞) determines t∗2 > t2 so that t2 = t∗2 − z(t∗2)− 1, and a return
map P : W0 → W0 can be defined by P (0, 0) = (0, 0), and P (ϕ, ζ) = Γ(Θ(t∗2, ϕ, ζ)) for
(ϕ, ζ) ∈ W where Γ : X × Z → X × Z is given by Γ(ϕ, ζ) = (ϕ̂, ζ), with ϕ̂(s) = ϕ(s)
for s ∈ [−ζ − 1, 0], and ϕ̂(s) = ϕ(−ζ − 1) for s ∈ [−r,−ζ − 1]. A nontrivial fixed point
of P corresponds to a slowly oscillating periodic solution. A classical tool, that we apply
here as well, is Browder’s non-ejective fixed point theorem. A large part of section 4 is
devoted to the construction of a suitable subset of X × Z where Browder’s theorem is
applicable. We remark that, although the papers [20, 21, 2, 19, 31, 33, 30, 29] consider a
similar approach to get slowly oscillating periodic solutions, none of them can be directly
applied here, because of the particular definition of the state-dependent queueing delay.
Some steps of the proof are analogous, and other parts require new ideas.

It is a crucial result that P (ϕ, ζ) cannot decay too fast: there are constants θ > 0,
ρ > 0 with vϕ,ζ(t∗2) ≥ θ (ϕ(0))ρ for all (ϕ, ζ) ∈ W . This fact allows to construct a C2-
function α on [0, q/c] such that α(0) = 0, α′ > 0, α′′ > 0 on (0, q/c], α(q/c) is small
enough, and the delayed inequality

α

(
ξ − d

c

)
≥ θ (α(ξ))ρ

(
ξ ∈

[
d

c
,
q

c

])
7



holds, provided d < q. Defining the compact subsets

Wα,K1 =
{

(ϕ, ζ) ∈ W0

∣∣ϕ(0) ≥ α(ζ)
}
,

Wα,K0 =
{

(ϕ, ζ) ∈ Wα,K1

∣∣ lip(ϕ) ≤ K0

} (1.11)

of X × Z, the inclusion P (Wα,K1) ⊆ Wα,K0 is satisfied. However, Wα,K1 and Wα,K0 are
not convex. Following [19], the subset

Vα,K1 =
{

(ψ, ζ) ∈ C[−1,0] × Z
∣∣∣ψ([−1, 0]) ⊆ [0, B], lip(ψ) ≤ K1,

[−1, 0] 3 s 7→ ψ(s)ef1rs ∈ R is nondecreasing, ψ(−1) = 0, ψ(0) ≥ α(ζ)
} (1.12)

of C[−1,0] × R is compact and convex. The set Vα,K1 can be mapped into Wα,K1 by the
streching map Q given by Q(ψ, ζ) = (ϕ, ζ) with ϕ(s) = ψ(s/(ζ + 1)), s ∈ [−ζ − 1, 0], and
ϕ
∣∣
[−r,−ζ−1] ≡ 0. The squeezing map R, defined by R(ϕ, ζ) = (ψ, ζ) with ψ(s) = ϕ((ζ+1)s),

s ∈ [−1, 0], maps Wα,K0 into Vα,K1 . Browder’s theorem can be applied for the map

Π : Vα,K1 ∈ (ψ, ζ) 7→ R ◦ P ◦Q(ψ, ζ) ∈ Vα,K1

to find a non-ejective fixed point of Π in Vα,K1 . This yields a non-ejective fixed point of
P in Wα,K1 as well. The non-ejective fixed point is nontrivial provided (0, 0) ∈ Wα,K1

is ejective. Ejectivity of (0, 0) ∈ Wα,K1 follows in a standard way from that of the zero
solution of the constant delay equation v̇(t) = −f(v(t))− g(v(t− 1)).

Finally, section 5 gives examples.

2 Preliminary results

In order to study the queue equation (1.2) we recall a basic result of [6] for differential
inclusions.

Let J = [t0, t1] ⊂ R for some fixed t0, t1 ∈ R, t0 < t1, and let D ⊆ Rj be closed. The
multivalued map

F : J ×D → 2Rj \ {∅} =
{
A ⊆ Rj, A 6= ∅

}
is called upper semicontinuous if F−1(A) is closed in J × D whenever A ⊆ Rj is closed.
Note that the definition of the inverse image

F−1(A) =
{

(t, y) ∈ J ×D
∣∣ F (t, y) ∩ A 6= ∅

}
(2.1)

is different from that of a single valued map.
Let ρ(y,D) = infz∈D|y − z| for y ∈ Rj. For y ∈ D define

TD(y) =

{
z ∈ Rj : lim inf

λ→0+

1

λ
ρ(y + λz,D) = 0

}
.

The following existence result is Theorem 5.1 in [6]:

Theorem A. Suppose that the multivalued map F : J ×D → 2Rj \ {∅} is upper semicon-
tinuous, for all (t, y) ∈ J ×D the set F (t, y) is closed and convex in Rj,

F (t, y) ∩ TD(y) 6= ∅ for all (t, y) ∈ J ×D,
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moreover, there is a Lebesgue integrable c : J → [0,∞) such that, for all (t, y) ∈ J ×D,

sup{|z| : z ∈ F (t, y)} ≤ c(t)(1 + |y|)

holds. Then, for each y0 ∈ D, there exists an absolutely continuous y : J → D such that
y(t0) = y0 and the inclusion ẏ(t) ∈ F (t, y(t)) holds a.e. on [t0, t1].

Assume that E is a Banach space, C ⊂ E is compact and convex in E , the map
F : C → C is continuous. A fixed point x0 ∈ C of F is said to be ejective if there exists
an open neighborhood U of x0 in C such that for each x ∈ U \ {x0} there exists a positive
integer k(x) such that for the iterate Fk(x)(x) ∈ C \ U holds. In section 4 we will apply
the following result of Browder [4] on the existence of a non-ejective fixed point.

Theorem B. Assume that E is a Banach space, C ⊂ E is an infinite dimensional compact
and convex subset of E, the map F : C → C is continuous. Then F has a non-ejective
fixed point.

For the application of the above result, we have to guarantee the ejectivity of the
trivial fixed point of a return map. The proof of the ejectivity uses properties of the
linear autonomous equation with constant delay

ẇ(t) = −µw(t)− νw(t− 1) (2.2)

where µ ≥ 0 and ν > 0. We recall some basic results from [7, 9, 32]. It is well known
that every ϕ ∈ C[−1,0] uniquely determines a solution wϕ : [−1,∞) → R of equation
(2.2) with wϕ|[−1,0] = ϕ, and the solutions define the strongly continuous semigroup
(T (t))t≥0 on [0,∞) × C[−1,0]. The spectrum of the generator consists of the solutions
λ ∈ C of the characteristic equation λ + µ + νe−λ = 0. Assume ν > e−µ−1. Then
all points in the spectrum form a sequence of complex conjugate pairs (λj, λj)

∞
j=1 with

Reλj > Reλj+1, Imλj ∈ ((2j − 2)π, (2j − 1)π) for all j ∈ N, and Reλj → −∞ as j →∞.
An explicit criterion for Reλ1 > 0 is

ν >
ϑ

sinϑ
where ϑ ∈ (0, π) is the unique solution of µ = −ϑ cotϑ. (2.3)

Let L and Q denote the realified generalized eigenspaces of the generator associated with
the spectral sets {λ1, λ1} and {λk, λk : k ≥ 2}, respectively. Then C[−1,0] = L ⊕ Q. A
basis of L is given by the restrictions of the functions

t 7→ eReλ1t sin(Imλ1t), t 7→ eReλ1t cos(Imλ1t)

to the interval [−1, 0].
Let S ⊂ C[−1,0] \ {0} be the set of functions with at most one sign change in [−1, 0].

The set S is invariant, i.e., T (t)S ⊆ S for all t ≥ 0. Moreover, S ∩Q = ∅.

Proposition 2.1. If µ ≥ 0 and ν > 0 are given such that Reλ1 > 0, i.e., inequality (2.3)
holds, and ϕ ∈ S, then the solution wϕ of equation (2.2) is unbounded on [−1,∞).

Proof. Let ϕ ∈ S and w = wϕ. From C[−1,0] = L ⊕ Q, S ∩ Q = ∅ and ϕ 6= 0 it follows

that ϕ = ϕL + ϕQ with ϕL ∈ L \ {0}, ϕQ ∈ Q. Then w = wL + wQ where wL = wϕ
L

and wQ = wϕ
Q

. As ϕL ∈ L \ {0}, there exist k1, k2 ∈ R with k21 + k22 6= 0 so that, for all
t ≥ −1,

wL(t) = eReλ1t [k1 sin(Imλ1t) + k2 cos(Imλ1t)] .
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The estimate on the complementary space Q (see, e.g., [7] or [9]) implies that there are
δ > 0 and M > 0 such that, for all t ≥ −1,

|wQ(t)| ≤Me(Reλ1−δ)t.

Then, by Reλ1 > 0, it easly follows that w is unbounded.

3 The solution semiflow

Assume that r0, r1, r2, q, a, b, c,K, L are given constants as in section 1, and Hypotheses
(F1)–(F4) hold. First we consider System (1.5), (1.2). Condition (F3) means that F (ϕ, ψ)
does not depend on ψ|[−r2,0]. Consequently, for given ϕ ∈ X and ψ ∈ Y , we can find
x : [−r, T ] → R with x0 = ϕ satisfying equation (1.5) on an interval [0, T ] for some
T ∈ (0, r2), no matter how y|[−r,0] = ψ is extended to [−r, T ]. This is done in the next
proposition by using a standard fixed point technique. After that x : [−r, T ] → R is
obtained, we will be able to determine y : [−r, T ]→ R satisfying equation (1.2) on [0, T ].
These two results together give a solution of System (1.5), (1.2) on [−r, T ]. Repeating
this procedure by time-T steps a global solution will be obtained.

Proposition 3.1. Let T ∈ (0, r2] be fixed such that TL < 1. For every (ϕ, ψ) ∈ X × Y
there exists a unique function x = x(ϕ, ψ) : [−r, T ] → R such that x0 = ϕ, xt ∈ X for
all t ∈ [0, T ], x is differentiable on (0, T ], and, for each y : [−r, T ] → R with y0 = ψ
and yt ∈ Y for all t ∈ [0, T ], x satisfies equation (1.5) on (0, T ]. Moreover, the Lipschitz
continuity property

∥∥x (ϕ1, ψ1
)
− x

(
ϕ2, ψ2

)∥∥
[−r,T ] ≤

‖ϕ1 − ϕ2‖[−r,0] + TL ‖ψ1 − ψ2‖[−r,0]
1− TL

holds for all (ϕ1, ψ1), (ϕ2, ψ2) in X × Y .

Proof. Let (ϕ, ψ) ∈ X ×Y be given. Define ϕ̂, ψ̂ ∈ C[−r,T ] by ϕ̂(t) = ϕ(t), ψ̂(t) = ψ(t) for

t ∈ [−r, 0], and ϕ̂(t) = ϕ(0), ψ̂(t) = ψ(0) for t ∈ [0, T ].
The set

M =
{
u ∈ C[0,T ] : u(0) = 0, lip(u) ≤ K

}
,

is a complete metric space with distance d(u, v) = ‖u − v‖[0,T ]. Introduce the map
m : M × [a, b]→ C[−r,T ] by

m(u, ξ)(t) =

{
0 if t ∈ [−r, 0],

min{max{u(t), a− ξ}, b− ξ} if t ∈ [0, T ].

The function m(u, ξ) is a trivial extension of u to [−r, 0], and it cuts the values of u on
[0, T ] so that m(u, ξ)(t) ∈ [a− ξ, b− ξ] is satisfied. Then it is clear that

ϕ̂t +mt(u, ϕ(0)) ∈ X, ψ̂t ∈ Y for all t ∈ [0, T ],

and [0, T ] 3 t 7→ ϕ̂t + mt(u, ϕ(0)) ∈ X, [0, T ] 3 t 7→ ψ̂t ∈ Y are continuous maps. It is
easy to see that∥∥m (u1, ξ)−m (u2, ξ)∥∥

[−r,T ] ≤
∥∥u1 − u2∥∥

[0,T ]
(u1 ∈M, u2 ∈M, ξ ∈ [a, b]).
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Define the map N : X × Y ×M →M as follows:

N (ϕ, ψ, u)(t) =

∫ t

0

F
(
ϕ̂s +ms(u, ϕ(0)), ψ̂s

)
ds, t ∈ [0, T ].

By (F1) and (F2), F is continuous and |F | ≤ K. Therefore, it is obvious thatN (ϕ, ψ, u) ∈
M .

Now, fix (ϕ, ψ) ∈ X × Y . For functions u1, u2 ∈ M , by the definition of N , m, and
by (F1) and the Lipschitz property of m, we have∥∥N (ϕ, ψ, u1)−N (ϕ, ψ, u2)∥∥

[0,T ]

= max
t∈[0,T ]

∣∣∣∣∫ t

0

[
F
(
ϕ̂s +ms

(
u1, ϕ(0)

)
, ψ̂s

)
− F

(
ϕ̂s +ms

(
u2, ϕ(0)

)
, ψ̂s

)]
ds

∣∣∣∣
≤
∫ T

0

L
∥∥m (u1, ϕ(0)

)
−m

(
u2, ϕ(0)

)∥∥
[−r,T ] ds ≤ TL

∥∥u1 − u2∥∥
[0,T ]

.

Since TL < 1, for all (ϕ, ψ) ∈ X×Y , the map M 3 u 7→ N (ϕ, ψ, u) ∈M is a contraction.
Therefore, as M is a complete metric space, there is a unique fixed point u∗(ϕ, ψ) ∈M .

Let (ϕi, ψi) ∈ X × Y and u∗i = u∗ (ϕi, ψi), i = 1, 2. From the obvious inequality∥∥ϕ̂1 +m
(
u, ϕ1(0)

)
− ϕ̂2 −m

(
u, ϕ2(0)

)∥∥
[−r,T ] ≤

∥∥ϕ1 − ϕ2
∥∥
[−r,0] ,

it follows that

‖u∗1 − u∗2‖[0,T ] =
∥∥N (ϕ1, ψ1, u∗1

)
−N

(
ϕ2, ψ2, u∗2

)∥∥
[0,T ]

≤ max
t∈[0,T ]

∣∣∣∣∫ t

0

[
F
(
ϕ̂1
s +ms

(
u∗1, ϕ

1(0)
)
, ψ̂1

s

)
− F

(
ϕ̂2
s +ms

(
u∗2, ϕ

2(0)
)
, ψ̂2

s

)]
ds

∣∣∣∣
≤
∫ T

0

L

(∥∥ϕ̂1 +m
(
u∗1, ϕ

1(0)
)
− ϕ̂2 −m

(
u∗1, ϕ

2(0)
)∥∥

[−r,T ]

+
∥∥m (u∗1, ϕ2(0)

)
−m

(
u∗2, ϕ

2(0)
)∥∥

[−r,T ] +
∥∥∥ψ̂1 − ψ̂2

∥∥∥
[−r,T ]

)
ds

≤ TL
(∥∥ϕ1 − ϕ2

∥∥
[−r,0] + ‖u∗1 − u∗2‖[0,T ] +

∥∥ψ1 − ψ2
∥∥
[−r,0]

)
.

Consequently,∥∥u∗ (ϕ1, ψ1
)
− u∗

(
ϕ2, ψ2

)∥∥
[0,T ]
≤ TL

1− TL

(∥∥ϕ1 − ϕ2
∥∥
[−r,0] +

∥∥ψ1 − ψ2
∥∥
[−r,0]

)
.

We claim that ϕ(0) + u∗(ϕ, ψ)(t) ∈ (a, b) for all (ϕ, ψ) ∈ X × Y, t ∈ (0, T ].
If t0 ∈ [0, T ] and ϕ(0) + u∗(ϕ, ψ)(t0) = a, we have ϕ̂(t0) + m(u∗(ϕ, ψ), ϕ(0))(t0) = a.

Then by (F4), F (ϕ̂t0 + mt0(u
∗(ϕ, ψ), ϕ(0)), ψ̂t0) > 0. By continuity, it follows that there

is a δ > 0 so that F (ϕ̂t + mt(u
∗(ϕ, ψ), ϕ(0)), ψ̂t) > 0 for all t ∈ (t0 − δ, t0 + δ) ∩ [0, T ].

The fixed point equation for u∗(ϕ, ψ) implies that t 7→ u∗(ϕ, ψ)(t) strictly increases in
(t0 − δ, t0 + δ) ∩ [0, T ]. Hence it is easy to see that

ϕ(0) + u∗(ϕ, ψ)(t) > a for all t ∈ (0, T ].

Analogously, ϕ(0) + u∗(ϕ, ψ)(t) < b holds for all t ∈ (0, T ]. So the claim is true.
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A consequence of the claim is that

m(u∗(ϕ, ψ), ϕ(0))(t) = u∗(ϕ, ψ)(t) for all t ∈ [0, T ],

and the function

x(t) = x(ϕ, ψ)(t) =

{
ϕ(t) if t ∈ [−r, 0],

ϕ(0) + u∗(ϕ, ψ)(t) if t ∈ [0, T ]

satisfies x0 = ϕ, xt ∈ X for t ∈ [0, T ], x is differentiable on (0, T ], and equation (1.5)

holds on (0, T ] with the particular choice y = ψ̂. Observe that, by hypothesis (F3), the
above construction gives the same x(ϕ, ψ) for any y : [−r, T ] → R so that y0 = ψ and
yt ∈ Y for t ∈ [0, T ].

Finally, it is straightforward to get the estimate∥∥x (ϕ1, ψ1
)
− x

(
ϕ2, ψ2

)∥∥
[−r,T ] ≤

∥∥ϕ1 − ϕ2
∥∥
[−r,0] +

∥∥u∗ (ϕ1, ψ1
)
− u∗

(
ϕ2, ψ2

)∥∥
[0,T ]

≤ 1

1− TL
∥∥ϕ1 − ϕ2

∥∥
[−r,0] +

TL

1− TL
∥∥ψ1 − ψ2

∥∥
[−r,0] .

This completes the proof.

In the next step we study equation (1.2). Since we need the same type of result in
another situation as well, a slightly more general version is considered.

Let t0, t1 ∈ R with t0 < t1. Assume that a function ξ ∈ C([t0, t1], [a, b]) is given. Let
y0 ∈ [0, q] be fixed. We consider the equation

ẏ(t) =


ξ(t)− c if 0 < y(t) < q,

[ξ(t)− c]+ if y(t) = 0,

−[ξ(t)− c]− if y(t) = q

(3.1)

on the interval [t0, t1] with initial condition y(t0) = y0.

Proposition 3.2. For each ξ ∈ C([t0, t1], [a, b]) and each y0 ∈ [0, q] there exists a unique
Lipschitz continuous function y = y(ξ, y0) : [t0, t1]→ [0, q] such that y(t0) = y0, slope(y) ⊆
[a− c, b− c], and equation (3.1) holds almost everywhere in [t0, t1]. In addition, y(ξ, y0) is
Lipschitz continuous in ξ, y0, namely, for all ξ1, ξ2 ∈ C([t0, t1], [a, b]) and y0,1, y0,2 ∈ [0, q],∥∥y(ξ1, y0,1)− y(ξ2, y0,2)

∥∥
[t0,t1]

≤
∣∣y0,1 − y0,2∣∣+ (t1 − t0)

∥∥ξ1 − ξ2∥∥
[t0,t1]

.

Proof. Let ξ ∈ C([t0, t1], [a, b]) and y0 ∈ [0, q] be fixed. Define the map h : [t0, t1]×[0, q]→
R by

h(t, y) =


ξ(t)− c if 0 < y < q,

[ξ(t)− c]+ if y = 0,

−[ξ(t)− c]− if y = q.

Then equation (3.1) with y(t0) = y0 on [t0, t1] can be written as an initial value problem{
ẏ(t) = h(t, y(t)) a.e. for t ∈ [t0, t1],

y(t0) = y0.
(3.2)
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The remaining part of the proof is divided into three steps. In Steps 1–2 we show
existence, in Step 3 uniqueness and the Lipschitz property are obtained.

Step 1. We extend h to a multivalued function h̃ : [t0, t1]× [0, q]→ 2R \ {∅} as follows:

h̃(t, y) =



{ξ(t)− c} if y ∈ (0, q),

or y = 0 and ξ(t) ≥ c,

or y = q and ξ(t) ≤ c,

[ξ(t)− c, 0] if y = 0 and ξ(t) < c,

[0, ξ(t)− c] if y = q and ξ(t) > c.

We claim that h̃ is an upper semicontinuous function. To check it, let A ⊆ R be
closed, nonempty, and consider its inverse image h̃−1(A) defined by (2.1) with F = h̃.

Let (sn, yn)∞n=0 be a sequence in h̃−1(A) converging to (s∗, y∗) ∈ [t0, t1] × [0, q]. We have

to show that (s∗, y∗) ∈ h̃−1(A), i.e., h̃(s∗, y∗) ∩ A is nonempty. By the definition of h̃,

ξ(t) − c ∈ h̃(t, y). Thus ξ(s∗) − c ∈ h̃(s∗, y∗), and, since ξ is continuous and A is closed,
we have

h̃(sn, yn) 3 ξ(sn)− c→ ξ(s∗)− c ∈ A.

Therefore h̃−1(A) is closed.

We apply theorem A by choosing j = 1, D = [0, q], J = [t0, t1], F = h̃. Clearly,
TD(y) = R for y ∈ (0, q), TD(0) = [0,∞) and TD(q) = (−∞, 0]. It is obvious that the
conditions of theorem A are satisfied with c(t) = max{c − a, b − c}. Therefore, there is
an absolutely continuous y = y(ξ, y0) : [t0, t1]→ [0, q] such that

ẏ(t) ∈ h̃(t, y(t)) a.e. for t ∈ [t0, t1] (3.3)

and y(t0) = y0.
Step 2. We show that for the function y = y(ξ, y0), obtained in Step 1, equation (3.1)

holds almost everywhere, and y(t0) = y0.

Assume that t ∈ (t0, t1) is given such that ẏ(t) exists and ẏ(t) ∈ h̃(t, y(t)).

If y(t) ∈ (0, q) then h̃(t, y(t)) = {ξ(t) − c}, and consequently ẏ(t) = h(t, y(t)). If

y(t) = 0 then necessarily ẏ(t) = 0. From ẏ(t) = 0 ∈ h̃(t, 0) it follows that ξ(t) ≤ c, and
thus 0 = ẏ(t) = [ξ(t)− c]+ = h(t, y(t)). The case y(t) = q is analogous.

Therefore, y = y(ξ, y0) satisfies equation (3.2). Then, by the definition of h(t, y) and
ξ([t0, t1]) ⊆ [a, b], it is clear that (3.1) holds almost everywhere for y, y(t0) = y0, and
slope(y) ⊆ [a− c, b− c].

Step 3. Let ξ1, ξ2 ∈ C([t0, t1], [a, b]), y
0,1, y0,2 ∈ [0, q], y1 = y(ξ1, y0,1), y2 = y(ξ2, y0,2).

Then the map [t0, t1] 3 t 7→ |y1(t)− y2(t)| ∈ R is absolutely continuous.
Claim. For ξ1, ξ2 ∈ C([t0, t1], [a, b]), y0,1, y0,2 ∈ [0, q], y1 = y(ξ1, y0,1), y2 = y(ξ2, y0,2),

d

ds

∣∣y1(s)− y2(s)∣∣ ≤ ∣∣ξ1(s)− ξ2(s)∣∣ holds a.e. in [t0, t1].

Observe that, for almost all s ∈ (t0, t1), the derivative ẏi(s) exists with ẏi(s) = hi(s, yi(s)),
where hi is the map constructed as h above with ξ replaced by ξi, i = 1, 2, moreover,
(t0, t1) 3 s 7→ |y1(s) − y2(s)| ∈ R is differentiable almost everywhere. Fix such an
s ∈ (t0, t1). Remark that if a real function α and its absolute value |α| are differentiable
at s, then

d

ds
|α(s)| = lim

δ→0

|α(s+ δ)| − |α(s)|
δ

≤
∣∣∣∣limδ→0

α(s+ δ)− α(s)

δ

∣∣∣∣ = |α̇(s)| . (3.4)
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We distinguish 4 cases.
Case 1. yi(s) ∈ (0, q), i ∈ {1, 2}. Then, by (3.4) and the definition of h1,h2,

d

ds

∣∣y1(s)− y2(s)| ≤ ∣∣ẏ1(s)− ẏ2(s)∣∣ = |ξ1(s)− ξ2(s)
∣∣ .

Case 2. yi(s) ∈ {0, q}, i ∈ {1, 2}. In this case ẏ1(s) = ẏ2(s) = 0, and hence

d

ds

∣∣y1(s)− y2(s)∣∣ ≤ ∣∣ẏ1(s)− ẏ2(s)∣∣ = 0 ≤
∣∣ξ1(s)− ξ2(s)∣∣ .

Case 3. y1(s) = 0, y2(s) ∈ (0, q). Then ẏ1(s) = 0 and consequently ξ1(s) ≤ c. In
addition,

d

ds

∣∣y1(s)− y2(s)∣∣ =
d

ds

(
y2(s)− y1(s)

)
= ẏ2(s)− ẏ1(s)

= ξ2(s)− c ≤ ξ2(s)− ξ1(s) ≤
∣∣ξ1(s)− ξ2(s)∣∣ .

Case 4. y1(s) ∈ (0, q), y2(s) = q. Then ẏ2(s) = 0 and ξ2(s) ≥ c follow. Hence

d

ds

∣∣y1(s)− y2(s)∣∣ =
d

ds

(
y2(s)− y1(s)

)
= ẏ2(s)− ẏ1(s)

= −
(
ξ1(s)− c

)
= c− ξ1(s) ≤ ξ2(s)− ξ1(s) ≤

∣∣ξ1(s)− ξ2(s)∣∣ .
The remaining cases can be obtained by changing the indices. This completes the

proof of the claim.
By the definition of the norm, the absolute continuity of t 7→ |y1(t) − y2(t)|, and by

the above claim, we have∥∥y1 − y2∥∥
[t0,t1]

= max
t∈[t0,t1]

∣∣y1(t)− y2(t)∣∣
= max

t∈[t0,t1]

(∣∣y0,1 − y0,2∣∣+

∫ t

t0

d

ds

∣∣y1(s)− y2(s)∣∣ ds)
≤
∣∣y0,1 − y0,2∣∣+ max

t∈[t0,t1]

∫ t

t0

∣∣ξ1(s)− ξ2(s)∣∣ ds
≤
∣∣y0,1 − y0,2∣∣+ (t1 − t0)

∥∥ξ1 − ξ2∥∥
[t0,t1]

.

This implies the uniqueness of y(ξ, y0), and the Lipschitz continuity of y(ξ, y0) with respect
to ξ and y0. The proof is complete.

The following corollary is immediate from lemma 3.2.

Corollary 3.3. Let T > 0. For all ξ̃ ∈ C([−r, T ], [a, b]) and ψ ∈ Y there exists a unique

Lipschitz continuous function y = y(ξ̃, ψ) : [−r, T ] → [0, q] such that y0 = ψ, slope(y) ⊆
[a− c, b− c], and equation (3.1) holds with ξ(t) = ξ̃(t− r0) almost everywhere in [0, T ]. In

addition, y(ξ̃, ψ) is Lipschitz continuous in ξ̃, ψ, namely, for all ξ̃1, ξ̃2 ∈ C([−r, T ], [a, b])
and ψ1, ψ2 ∈ Y ,∥∥∥y(ξ̃1, ψ1)− y(ξ̃2, ψ2)

∥∥∥
[−r,T ]

≤
∥∥ψ1 − ψ2

∥∥
[−r,0] + T

∥∥∥ξ̃1 − ξ̃2∥∥∥
[−r,T ]

.

Now we are in a position to prove existence, uniqueness, and continuous dependence
of the solutions of System (1.5), (1.2).
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Theorem 3.4. For each (ϕ, ψ) ∈ X × Y there exists a unique solution

xϕ,ψ : [−r,∞)→ R, yϕ,ψ : [0,∞)→ R

of System (1.5), (1.2) on [−r,∞) satisfying the initial condition xϕ,ψ0 = ϕ, yϕ,ψ0 = ψ. The
mapping

Φ : [0,∞)×X × Y 3 (t, ϕ, ψ) 7→
(
xϕ,ψt , yϕ,ψt

)
∈ X × Y

defines a continuous semiflow on X × Y . In addition, for all (ϕj, ψj) ∈ X × Y , j = 1, 2,
t ≥ 0, Φ has the Lipschitz continuity property∥∥Φ

(
t, ϕ1, ψ1

)
− Φ

(
t, ϕ2, ψ2

)∥∥
X×Y ≤

∥∥(ϕ1, ψ1
)
−
(
ϕ2, ψ2

)∥∥
X×Y e

t(1+L).

Proof. Let T ∈ (0, r2], TL < 1 and (ϕ, ψ) ∈ X × Y . By proposition 3.1 there exists a
unique function x = x(ϕ, ψ) : [−r, T ]→ R such that x0 = ϕ, xt ∈ X for all t ∈ [0, T ], x is
differentiable on (0, T ], x satisfies equation (1.5) on (0, T ], and the function y : [−r, T ]→ R
in (1.5) is arbitrary with y0 = ψ and yt ∈ Y for all t ∈ [0, T ]. By corollary 3.3, with

ξ̃ = x(ϕ, ψ), we can choose a unique y = y(x(ϕ, ψ), ψ) : [−r, T ] → R such that y0 = ψ,
yt ∈ Y for all t ∈ [0, T ], and equation (1.2) holds almost everywhere in [0, T ].

The functions xϕ,ψ : [−r,∞) → R and yϕ,ψ : [0,∞) → R are defined as follows.
Set xϕ,ψ(t) = x(ϕ, ψ)(t), yϕ,ψ(t) = y(x(ϕ, ψ), ψ)(t) for t ∈ [−r, T ]. Hence we can define

ϕ̃ = xϕ,ψT ∈ X and ψ̃ = yϕ,ψT ∈ Y . For (ϕ̃, ψ̃) ∈ X × Y , the functions x(ϕ̃, ψ̃) and y(ϕ̃, ψ̃)

can be constructed as above. Set xϕ,ψ(t) = x(ϕ̃, ψ̃)(t− T ), yϕ,ψ(t) = y(x(ϕ̃, ψ̃), ψ̃)(t− T )
for t ∈ [T, 2T ]. This procedure can be repeated to define xϕ,ψ and yϕ,ψ on the interval
[−r,∞). The differentiability of xϕ,ψ on (0,∞) follows from the continuity of the map
[0,∞) 3 t 7→ F (xϕ,ψt , yϕ,ψt ) ∈ R. Therefore the pair xϕ,ψ, yϕ,ψ is a solution. In order
to show uniqueness, let x̂, ŷ : [−r, ω) → R be another solution with x̂0 = ϕ, ŷ0 = ψ,
and 0 < ω ≤ ∞. Pick a maximal t0 ∈ [0, ω) such that x(t) = x̂(t), y(t) = ŷ(t) for all
t ∈ [−r, t0]. Choosing (xt0 , yt0) ∈ X × Y as initial pair of functions, proposition 3.1 and
corollary 3.3 give that x and y are unique on the interval [−r, t0 + δ) for some δ > 0,
respectively, a contradiction. So, the uniqueness holds. Define

Φ(t, ϕ, ψ) =
(
xϕ,ψt , yϕ,ψt

)
(t ≥ 0, ϕ ∈ X, ψ ∈ Y ) .

The semigroup property of Φ follows from the existence, uniqueness and from the fact
that System (1.5), (1.2) is autonomous.

Now we prove that Φ is Lipschitz continuous in ϕ, ψ.
Let (ϕi, ψi) ∈ X × Y , xi = xϕ

i,ψi , yi = yϕ
i,ψi , i = 1, 2. For each T ≥ 0 with T ∈ (0, r2]

and TL < 1, by using proposition 3.1 and corollary 3.3, we have the estimate∥∥x1 − x2∥∥
[t−r,t+T ] +

∥∥y1 − y2∥∥
[t−r,t+T ]

≤
∥∥x1 − x2∥∥

[t−r,t+T ] +
∥∥y1 − y2∥∥

[t−r,t] + T
∥∥x1 − x2∥∥

[t−r,t+T ]

= (1 + T )
∥∥x1 − x2∥∥

[t−r,t+T ] +
∥∥y1 − y2∥∥

[t−r,t]

≤ 1 + T

1− TL

(∥∥x1 − x2∥∥
[t−r,t] + TL

∥∥y1 − y2∥∥
[t−r,t]

)
+
∥∥y1 − y2∥∥

[t−r,t]

=
1 + T

1− TL
∥∥x1 − x2∥∥

[t−r,t] +
1 + T 2L

1− TL
∥∥y1 − y2∥∥

[t−r,t]

≤ 1 + T

1− TL

(∥∥x1 − x2∥∥
[t−r,t] +

∥∥y1 − y2∥∥
[t−r,t]

)
.
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Hence, for the right-hand upper Dini derivative we find

D+
(∥∥x1t − x2t∥∥[−r,0] +

∥∥y1t − y2t ∥∥[−r,0])
= lim sup

T→0+

1

T

(∥∥x1t+T − x2t+T∥∥[−r,0] +
∥∥y1t+T − y2t+T∥∥[−r,0]

−
∥∥x1t − x2t∥∥[−r,0] − ∥∥y1t − y2t ∥∥[−r,0] )
≤ lim sup

T→0+

1

T

(
1 + T

1− TL

(∥∥x1t − x2t∥∥[−r,0] +
∥∥y1t − y2t ∥∥[−r,0])

−
∥∥x1t − x2t∥∥[−r,0] − ∥∥y1t − y2t ∥∥[−r,0])
≤ lim sup

T→0+

1 + L

1− TL

(∥∥x1t − x2t∥∥[−r,0] +
∥∥y1t − y2t ∥∥[−r,0])

= (1 + L)
(∥∥x1t − x2t∥∥[−r,0] +

∥∥y1t − y2t ∥∥[−r,0]) .
Then the inequality

D+
[
e−(L+1)t

(∥∥x1t − x2t∥∥[−r,0] +
∥∥y1t − y2t ∥∥[−r,0])]

= −(L+ 1)e−(L+1)t
(∥∥x1t − x2t∥∥[−r,0] +

∥∥y1t − y2t ∥∥[−r,0])
+ e−(L+1)tD+

(∥∥x1t − x2t∥∥[−r,0] +
∥∥y1t − y2t ∥∥[−r,0]) ≤ 0

easily follows for all t ≥ 0. By Zygmund’s inequality (see e.g., [28, p. 10] or [18, p. 9]) the
function

[0,∞) 3 t 7→ e−(L+1)t
(∥∥x1t − x2t∥∥[−r,0] +

∥∥y1t − y2t ∥∥[−r,0]) ∈ R

is monotone nonincreasing. Consequently,∥∥x1t − x2t∥∥[−r,0] +
∥∥y1t − y2t ∥∥[−r,0] ≤ e(L+1)t

(∥∥x10 − x20∥∥[−r,0] +
∥∥y10 − y20∥∥[−r,0])

for all t ≥ 0. This shows the stated Lipschitz property of Φ.
The continuity of xϕ,ψ, yϕ,ψ : [−r,∞)→ R implies the continuity of the maps [0,∞) 3

t 7→ xϕ,ψt ∈ X, [0,∞) 3 t 7→ yϕ,ψt ∈ Y , since the topology of C[−r,0] is used on X, Y . Thus,
for each (ϕ, ψ) ∈ X × Y , the map [0,∞) 3 t 7→ Φ(t, ϕ, ψ) ∈ X × Y is continuous.

Finally, by the inequality∥∥Φ
(
t1, ϕ

1, ψ1
)
− Φ

(
t2, ϕ

2, ψ2
)∥∥

X×Y

≤
∥∥Φ
(
t1, ϕ

1, ψ1
)
− Φ

(
t1, ϕ

2, ψ2
)∥∥

X×Y +
∥∥Φ
(
t1, ϕ

2, ψ2
)
− Φ

(
t2, ϕ

2, ψ2
)∥∥

X×Y ,

the continuity of Φ follows from the above statements.

Now, we turn to the study of System (1.6), (1.2), (1.3), and prove that it can be
considered not only in the phase space X × Y but also in X × Z, see the definition of
solutions in X × Z.

First we show that equation (1.3) can be solved uniquely provided yt ∈ Y .
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Proposition 3.5. There is a unique map σ : Y → Z satisfying

σ(ψ) =
1

c
ψ(−σ(ψ)− r1). (3.5)

The map σ : Y → Z is Lipschitz continuous, namely, for all ψ1, ψ2 ∈ Y , we have∣∣σ (ψ1
)
− σ

(
ψ2
)∣∣ ≤ 1

a
max

s∈[−max{σ(ψ1),σ(ψ2)}−r1,−r1]

∣∣ψ1(s)− ψ2(s)
∣∣

≤ 1

a

∥∥ψ1 − ψ2
∥∥
[−r,0] .

(3.6)

Proof. Let ψ ∈ Y be given. Define % : [0, q/c] 3 s 7→ s−ψ(−s− r1)/c. For 0 ≤ s1 < s2 ≤
q/c, by using slope(ψ) ⊆ [a− c, b− c] and 0 < a < c, it follows that

%(s1)− %(s2)

s1 − s2
=
s1 − ψ(−s1 − r1)/c− s2 + ψ(−s2 − r1)/c

s1 − s2

= 1− 1

c

ψ(−s1 − r1)− ψ(−s2 − r1)
s1 − s2

= 1 +
1

c

ψ(−s1 − r1)− ψ(−s2 − r1)
(−s1 − r1)− (−s2 − r1)

≥ 1 +
a− c
c

=
a

c
> 0.

Hence, function % is strictly increasing in [0, q/c]. Observe that

%(0) = −ψ(−r1)
c

≤ 0 and %
(q
c

)
=
q

c
− ψ(q/c− r1)

c
≥ q

c
− q

c
= 0.

So, % has a unique zero, denoted by σ(ψ), in [0, q/c]. Clearly, σ(ψ) is unique with (3.5).
In order to prove the Lipschitz continuity of σ, let ψ1, ψ2 ∈ Y be given. If σ(ψ1) =

σ(ψ2) then inequality (3.6) trivially holds. Without loss of generality assume σ(ψ1) >
σ(ψ2). By slope(ψ2) ⊆ [a− c, b− c] we obtain

∣∣σ (ψ1
)
− σ

(
ψ2
)∣∣ = σ

(
ψ1
)
− σ

(
ψ2
)

=
ψ1(−σ(ψ1)− r1)− ψ2(−σ(ψ2)− r1)

c

=
ψ1(−σ(ψ1)− r1)− ψ2(−σ(ψ1)− r1)

c
+
ψ2(−σ(ψ1)− r1)− ψ2(−σ(ψ2)− r1)

c

≤ 1

c
max

s∈[−σ(ψ1)−r1,−r1]

∣∣ψ1(s)− ψ2(s)
∣∣+

c− a
c

∣∣σ (ψ1
)
− σ

(
ψ2
)∣∣ .

Hence(
1− c− a

c

) ∣∣σ (ψ1
)
− σ

(
ψ2
)∣∣ ≤ 1

c
max

s∈[−max{σ(ψ1),σ(ψ2)}−r1,−r1]

∣∣ψ1(s)− ψ2(s)
∣∣ ,

from which inequality (3.6) easily holds.

The next proposition is a key technical result. It shows that, for given ϕ ∈ X and
ζ ∈ Z, we can find uniquely an element ψ ∈ Y such that ψ satisfies equation (1.2), with
x = ϕ and y = ψ a.e. in [−ζ − r1, 0], and ζ = σ(ψ) holds as well. In order to guarantee
the uniqueness of ψ we choose it to have the constant value cζ on [−r,−ζ − r1].
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Proposition 3.6. There is a unique map

γ : X × Z → Y

so that ψ = γ(ϕ, ζ) satisfies
ψ(s) = cζ for s ∈ [−r,−ζ − r1],

ψ̇(s) =


ϕ(s− r0)− c if 0 < ψ(s) < q,

[ϕ(s− r0)− c]+ if ψ(s) = 0,

−[ϕ(s− r0)− c]− if ψ(s) = q

a.e. in [−ζ − r1, 0].
(3.7)

In addition, ζ = σ(γ(ϕ, ζ)) for all (ϕ, ζ) ∈ X × Z, and∥∥γ (ϕ1, ζ1
)
− γ

(
ϕ2, ζ2

)∥∥
[−r,0] ≤ r

∥∥ϕ1 − ϕ2
∥∥
[−r,0] + max{2c− a, b}

∣∣ζ1 − ζ2∣∣
for all ϕ1, ϕ2 ∈ X and ζ1, ζ2 ∈ Z.

Proof. Let (ϕ, ζ) ∈ X × Z be given. Define a function ψ : [−r, 0] → R as follows.
Let ψ(s) = cζ for s ∈ [−r, ζ − r1]. Applying lemma 3.2 with [t0, t1] = [−ζ − r1, 0],
ξ(s) = ϕ(s − r0) for s ∈ [−ζ − r1, 0], y0 = cζ, we can uniquely define ψ(s) = y(ξ, y0)(s)
for s ∈ [−ζ − r1, 0]. It is clear that γ(ϕ, ζ) = ψ is the unique element of Y satisfying
equation (3.7).

By the definition of γ(ϕ, ζ), we have ζ = (1/c)γ(ϕ, ζ)(−ζ− r1), that is ζ = σ(γ(ϕ, ζ)).
In order to show the Lipschitz continuity of γ, let (ϕi, ζ i) ∈ X ×Z and ψi = γ(ϕi, ζ i),

i = 1, 2. Without loss of generality, assume that ζ1 ≥ ζ2. If −r ≤ s ≤ −ζ1 − r1 then∣∣ψ1(s)− ψ2(s)
∣∣ =

∣∣cζ1 − cζ2∣∣ = c
∣∣ζ1 − ζ2∣∣ . (3.8)

If −ζ1 − r1 ≤ s ≤ −ζ2 − r1 then, by using that ψ1 is absolutely continuous (because it is
Lipschitz continuous) and thus ψ1(s)− cζ1 =

∫ s
−ζ1−r1 ψ̇

1(u) du,

|ψ1(s)− ψ2(s)| =
∣∣∣∣cζ1 +

∫ s

−ζ1−r1
ψ̇1(u) du− cζ2

∣∣∣∣
≤
∣∣cζ1 − cζ2∣∣+

∫ −ζ2−r1
−ζ1−r1

∣∣ϕ1(u− r0)− c
∣∣ du

≤ c
∣∣ζ1 − ζ2∣∣+ max{c− a, b− c}

∣∣ζ1 − ζ2∣∣ = max{2c− a, b}
∣∣ζ1 − ζ2∣∣ . (3.9)

For s ∈ [ζ2 − r1, 0] apply lemma 3.2 with [t0, t1] = [−ζ2 − r1, 0], y(t) = ψj(t), ξ(t) =
ϕj(t− r0), y0,j = ψj(−ζ2 − r1), j = 1, 2 to obtain∥∥ψ1 − ψ2

∥∥
[−ζ2−r1,q]

≤
∣∣ψ1
(
−ζ2 − r1

)
− ψ2

(
−ζ2 − r1

)∣∣
+
(
ζ2 + r1

) ∥∥ϕ1 − ϕ2
∥∥
[−ζ2−r1−r0,−r0]

.
(3.10)

Combining (3.8), (3.9), (3.10), and using c < 2c − a, ζ2 + r1 + r0 ≤ r, we get the stated
Lipschitz continuity.

Proposition 3.7. Let y ∈ C([−r,∞), [0, q]) be a Lipschitz continuous function with
slope(y) ⊆ [a − c, b − c]. Then the function z : [0,∞) 3 t 7→ σ(yt) ∈ R satisfies
slope(z) ⊆ [1− c/a, 1− c/b].
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Proof. Clearly, yt ∈ Y and z(t) = σ(yt) = (1/c)y(t − σ(yt) − r1) = (1/c)y(t − z(t) − r1),
t ≥ 0. Choose t1 ≥ 0, t2 ≥ 0 with t1 6= t2. Then t1 − z(t1) = t2 − z(t2) implies
z(t1) = (1/c)y(t1 − z(t1)) = (1/c)y(t2 − z(t2)) = z(t2), and t1 = t2, a contradiction. So,
t1 − z(t1) 6= t2 − z(t2), and

z(t1)− z(t2)

t1 − t2
=

1

c

y(t1 − z(t1)− r1)− y(t2 − z(t2)− r1)
t1 − t2

=
1

c

y(t1 − z(t1)− r1)− y(t2 − z(t2)− r1)
(t1 − z(t1)− r1)− (t2 − z(t2)− r1)

(t1 − z(t1)− r1)− (t2 − z(t2)− r1)
t1 − t2

=
1

c

y(s1)− y(s2)

s1 − s2

(
1− z(t1)− z(t2)

t1 − t2

)
with sj = tj − z(tj)− r1, j = 1, 2. Rearranging terms and multiplying by c we obtain(

c+
y(s1)− y(s2)

s1 − s2

)
z(t1)− z(t2)

t1 − t2
=
y(s1)− y(s2)

s1 − s2
.

Using slope(y) ⊆ [a− c, b− c], and ξ/(c+ ξ) ∈ [(a− c)/a, (b− c)/b] for ξ ∈ [a− c, b− c],
it follows that

z(t1)− z(t2)

t1 − t2
=

y(s1)−y(s2)
s1−s2

c+ y(s1)−y(s2)
s1−s2

∈
[
a− c
a

,
b− c
b

]
=
[
1− c

a
, 1− c

b

]
,

and the proof is complete.

Proposition 3.8. Let y ∈ C([−r,∞), [0, q]) be a Lipschitz continuous function with
slope(y) ⊆ [a− c, b− c], and define z : [0,∞) 3 t 7→ σ(yt) ∈ R. Then the map

η : [0,∞) 3 t 7→ t− z(t)− r1 ∈ R

is Lipschitz continuous with slope(η) ⊆ [c/b, c/a]. In particular, η is a strictly increasing
function, and, for its inverse η−1, slope(η−1) ⊆ [a/c, b/c] holds.

Proof. From lemma 3.7, with t1 ≥ 0, t2 ≥ 0 and t1 6= t2 we have

η(t1)− η(t2)

t1 − t2
=

(t1 − z(t1)− r1)− (t2 − z(t2)− r1)
t1 − t2

= 1− z(t1)− z(t2)

t1 − t2
∈
[c
b
,
c

a

]
.

Let tj = η(sj), j = 1, 2, with t1 6= t2. Then, for the inverse

η−1(t1)− η−1(t2)
t1 − t2

=
η−1(η(s1))− η−1(η(s1))

η(s1)− η(s1)
=

s1 − s2
η(s1)− η(s1)

∈
[
a

c
,
b

c

]
,

completing the proof.

In the remaining part of this section we consider a map G : X × Z → R satisfying
(G1)–(G3). Recall that, for F : X × Y → R given by

F (ϕ, ψ) = G(ϕ, σ(ψ)),

Hypotheses (F1)–(F4) hold provided LG ≥ Lmin{1, a}. We consider the system composed
of equations

ẋ(t) = G(xt, σ(yt)) (3.11)
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and (1.2) in the phase space X × Y as it is a particular case of System (1.5), (1.2).
Define the mappings

h : X × Z 3 (ϕ, ζ) 7→ (ϕ, γ(ϕ, ζ)) ∈ X × Y,
k : X × Y 3 (ϕ, ψ) 7→ (ϕ, σ(ψ)) ∈ X × Z.

(3.12)

Note that both of them are Lipschitz continuous, h is injective, but k is not. For their
compositions, we have

k ◦ h = idX×Z and h ◦ k
∣∣
h(X×Z) = idh(X×Z) .

Proposition 3.9. If ϕ ∈ X, ψ1 ∈ Y , ψ2 ∈ Y , ζ ∈ Z with ζ = σ(ψ1) = σ(ψ2) and

ψ1(s) = ψ2(s) for all s ∈ [−ζ − r1, 0],

then, for the semiflow Φ generated by System (3.11), (1.2), we have

k
(
Φ
(
t, ϕ, ψ1

))
= k

(
Φ
(
t, ϕ, ψ2

))
for all t ≥ 0.

Proof. From theorem 3.4 we know that Φ exists. Let (xi, yi) : [−r,∞) → R2 be given
such that Φ (t, ϕi, ψi) = (xit, y

i
t), t ≥ 0).

First we show that

x1(t) = x2(t) for all t ∈ [−r,∞), y1(t) = y2(t) for all t ∈ [−ζ − r1,∞). (3.13)

If (3.13) does not hold, then there exists a maximal t0 ∈ [0,∞) such that

x1(t) = x2(t) for all t ∈ [−r, t0], y1(t) = y2(t) for all t ∈ [−ζ − r1, t0]. (3.14)

We claim that σ (y1t ) = σ (y2t ) for all t ∈ [0, t0 + r1].
proposition 3.8 implies, for i = 1, 2, that

t− σ
(
yit
)
− r1 ≥ −σ

(
yi0
)
− r1 = −ζ − r1 for all t ∈ [0,∞).

From this inequality and from lemma 3.5, it follows for each t ∈ [0, t0 + r1] that∣∣σ (y1t )− σ (y2t )∣∣ ≤ 1

a
max

s∈[−max{σ(y1t ),σ(y2t )}−r1,−r1]

∣∣y1(t+ s)− y2(t+ s)
∣∣

=
1

a
max

s∈[t−max{σ(y1t ),σ(y2t )}−r1,t−r1]

∣∣y1(s)− y2(s)∣∣ ≤ 1

a
max

s∈[−ζ−r1,t0]

∣∣y1(s)− y2(s)∣∣ = 0.

Therefore the claim holds.
Setm(t) = σ (y1t ) = σ (y2t ), t ∈ [0, t0+r1]. Clearly, for both x1 and x2 the same equation

ẋ(t) = G(xt,m(t)) holds for all t ∈ (0, t0 + r1). By (3.14), x1t = x2t for all t ∈ [0, t0]. Since
G : X × Z → R is Lipschitz continuous, an application of Gronwall’s inequality yields
the existence of a δ ∈ (0, r1) so that x1(t) = x2(t) for all t ∈ [−r, t0 + δ]. Now we can
apply lemma 3.2 to conclude y1(t) = y2(t) for all t ∈ [−ζ − r1, t0 + δ]. This contradicts
the definition of t0. It follows that (3.13) is satisfied, and also k(x1t , y

1
t ) = k(x2t , y

2
t ) for all

t ≥ 0. This proves our statement.

Now we have all tools to show that for System (1.6), (1.2), (1.3) the space X ×Z is a
suitable phase space.
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Theorem 3.10. For each (ϕ, ζ) ∈ X × Z there exists a unique pair of functions

xϕ,ζ : [−r,∞)→ R, zϕ,ζ : [0,∞)→ R

such that (x, z) is a solution of System (1.6), (1.2), (1.3) in the phase space X × Z
satisfying the initial condition xϕ,ζ0 = ϕ, zϕ,ζ(0) = ζ. The mapping

Ψ : [0,∞)×X × Z 3 (t, ϕ, ζ) 7→
(
xϕ,ζt , zϕ,ζ(t)

)
∈ X × Z

defines a continuous semiflow. In addition, there exists a constant M > 0 such that∥∥Ψ
(
t, ϕ1, ζ1

)
−Ψ

(
t, ϕ2, ζ2

)∥∥ ≤M
∥∥(ϕ1, ζ1

)
−
(
ϕ2, ζ2

)∥∥ et(1+L) (3.15)

for all t ≥ 0, ϕ1, ϕ2 ∈ X, ζ1, ζ2 ∈ Z. Moreover, for all t ≥ 0, ϕ ∈ X, ζ ∈ Z,

Ψ(t, ϕ, ζ) = k(Φ(t, h(ϕ, ζ))).

Proof. Let (ϕ, ζ) ∈ X × Z be given.
1. Existence. By theorem 3.4, System (3.11), (1.2) has a unique solution in the phase

space X × Y , denoted by (xϕ,γ(ϕ,ζ), yϕ,γ(ϕ,ζ)) : [−r,∞) → R2, with x0 = ϕ, y0 = γ(ϕ, ζ).
Define Ψ : [0,∞)×X × Z → X × Z by

Ψ(t, ϕ, ζ) = k(Φ(t, h(ϕ, ζ))) = k
(
x
ϕ,γ(ϕ,ζ)
t , y

ϕ,γ(ϕ,ζ)
t

)
=
(
x
ϕ,γ(ϕ,ζ)
t , σ

(
y
ϕ,γ(ϕ,ζ)
t

))
.

Ψ is continuous since the functions h, k and Φ are continuous. The pair

xϕ,ζ(t) = xϕ,γ(ϕ,ζ)(t), t ∈ [−r,∞), zϕ,ζ(t) = σ
(
y
ϕ,γ(ϕ,ζ)
t

)
, t ∈ [0,∞),

is a solution of System (1.6), (1.2), (1.3) in X × Z with x0 = ϕ, z(0) = ζ.
2. Uniqueness. Assume the pair of functions x̃ : [−r, ω) → R, z̃ : [0, ω) → R is

also a solution of System (1.6), (1.2), (1.3) in X × Z with initial condition x̃0 = ϕ,
z̃(0) = ζ and 0 < ω ≤ ∞. Then, by definition, there exists a Lipschitz continuous
function ỹ : [−r, ω)→ R so that ỹt ∈ Y , z̃(t) = σ(ỹt) for all t ∈ [0, ω), and equation (1.2)
holds a.e. in [−ζ − r1, ω). From z̃(0) = ζ = σ(ỹ0) = (1/c)ỹ(−ζ − r1) and (1.2), it easily
follows that

ỹ(s) = γ(ϕ, ζ)(s) for all s ∈ [−ζ − r1, 0].

Now proposition 3.9 implies that

(xt, z(t)) = k(Φ(t, ϕ, γ(ϕ, ζ))) = k(Φ(t, ϕ, ỹ0)) = (x̃t, z̃(t)) for all t ∈ [0, ω),

and the proof of uniqueness is completed.
3. Properties of Ψ. We have to show that Ψ is a semiflow on X × Z, i.e.,

Ψ(t1 + t2, ϕ, ζ) = Ψ(t2,Ψ(t1, ϕ, ζ)) for all t1 ≥ 0, t2 ≥ 0. (3.16)

Let x : [−r,∞)→ R, z : [−ζ−1,∞)→ R be the solution of System (1.6), (1.2), (1.3),
y : [−r,∞)→ R be such that (1.2) holds a.e. in [−r,∞), and t1 ≥ 0, t2 ≥ 0.

Since Ψ(t, ϕ, ζ) = (xt, z(t)) for t ≥ 0, equation (3.16) is equivalent to

(xt1+t2 , z(t1 + t2)) = Ψ(t2, (xt1 , z(t1))). (3.17)
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Using the functions h and k defined in (3.12), it is easy to see that

Ψ(t, ϕ, ζ) = k(Φ(t, h(ϕ, ζ))) for all t ≥ 0,

so equation (3.17) can be written as

(xt1+t2 , z(t1 + t2)) = k(Φ(t2, xt1 , γ(xt1 , z(t1)))). (3.18)

The assumptions of proposition 3.9 clearly hold with xt1 , γ(xt1 , z(t1)), yt1 , z(t1) instead
of ϕ, ψ1, ψ2, ζ, so we have

k(Φ(t2, xt1 , γ(xt1 , z(t1)))) = k(Φ(t2, xt1 , yt1)) = k(xt1+t2 , yt1+t2)

= (xt1+t2 , σ(yt1+t2)) = (xt1+t2 , z(t1 + t2)).

Thus, (3.18) holds, and Ψ is a semiflow on X × Z.
From the Lipschitz property of Φ in theorem 3.4, and the Lipschitz continuity of h

and k, Ψ has the Lipschitz property (3.15) with some M > 0.

4 Slowly oscillating periodic solutions

In this section it is shown that for System (1.8), (1.9), (1.10) it is possible to have slowly
oscillatory periodic solutions. The model of Ranjan et al. [26, 25], i.e., System (1.4), (1.2),
(1.3) will be a particular case whenever r0 = 0, r1 = 1 and U , p are suitable, see section
5.

Recall from section 1 the constants a, b, c, q, with 0 < a < c < b, q > 0. For the rate
x(t), x(t) ∈ [a, b] is assumed, c is the maximal capacity of the server, q is an upper bound
for the length of the queue y(t). We suppose that there exists x∗ ∈ (a, c) serving as a
stationary solution of the rate control equation.

Set d = c − x∗ > 0, A = a − x∗ < 0, B = b − x∗ > d, and assume the following
conditions on f and g:

(S1) f, g ∈ C1([A,B],R);

(S2) f(ξ)ξ ≥ 0 and g(ξ)ξ > 0 for all ξ ∈ [A,B] \ {0}, g′(0) > 0;

(S3) g([A,B]) ∈ (−f(B),−f(A));

(S4) the map C 3 λ 7→ λ+ f ′(0) + g′(0)e−λ ∈ C has a zero with positive real part.

Now we define the system for which we will be able to show the existence of a periodic
solution. As we are interested in the oscillatory behaviour of x(t) around x∗ we introduce
v(t) = x(t) − x∗, and write the rate control equation for v instead of x. In the rest
of the paper we consider System (1.8), (1.9), (1.10). Note that Equations (1.2), (1.3),
with r0 = 0, r1 = 1 and x(t) = v(t) + x∗, become Equations (1.9), (1.10), respectively.
Moreover, equation (1.8) is a particular case of equation (1.6) provided r0 = 0, r1 = 1
and x(t) = v(t) + x∗, and G : X × Z → R is given by

G(ϕ, ζ) = −f(ϕ(0)− x∗)− g(ϕ(−ζ − 1)− x∗).

Define the functions f̃ , g̃ : [A,B]→ R as follows:

f̃(ξ) =

{
f(ξ)
ξ

if ξ 6= 0,

f ′(0) if ξ = 0,
g̃(ξ) =

{
g(ξ)
ξ

if ξ 6= 0,

g′(0) if ξ = 0.
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From (S1) and (S2) it follows that f̃ and g̃ are continuous, and there are constants f1 ≥ 0,
g1 > g0 > 0 such that

f̃([A,B]) ⊆ [0, f1], g̃([A,B]) ⊆ [g0, g1].

Let
r = 1 +

q

c
, K0 = (f1 + g1) max{−A,B}, K1 = rK0.

For ϕ ∈ C[−r,0] and k ∈ R define ϕ+ k ∈ C[−r,0] as [−r, 0] 3 s 7→ ϕ(s) + k ∈ R.
Under Hypotheses (S1)–(S3), with the above definition of G, it is clear that Condi-

tions (G1)–(G3) hold with LG = max{‖f‖1 + ‖g‖1, K‖g‖1}, K = K1, where ‖f‖1 =
maxξ∈[A,B] |f ′(ξ)|, ‖g‖1 = maxξ∈[A,B] |g′(ξ)|. Therefore, by theorem 3.10, for all (ϕ, ζ) ∈
X×Z, there exists a unique solution xϕ,ζ : [−r,∞)→ R, zϕ,ζ : [0,∞)→ R with xϕ,ζ0 = ϕ,
zϕ,ζ(0) = ζ, and Ψ(t, ϕ, ζ) = (xϕ,ζt , zϕ,ζ(t)). In addition, there exists a unique function
yϕ,ζ : [−r,∞) → R with yϕ,ζt ∈ Y for all t ≥ 0, yϕ,ζ0 = γ(ϕ, ζ) such that equation (1.2)
with r0 = 0, x(t) = xϕ,ζ(t), y(t) = yϕ,ζ(t) holds a.e. in [−ζ − 1,∞), and zϕ,ζ(t) = σ(yϕ,ζt )
for all t ≥ 0. Introduce the set

X =
{
ϕ ∈ C[−r,0]

∣∣ ϕ([−r, 0]) ⊆ [A,B], lip(ϕ) ≤ K1

}
.

By K = K1, we have
X =

{
ϕ ∈ C[−r,0]

∣∣ ϕ+ x∗ ∈ X
}
.

Observe that, for all (ϕ, ζ) ∈ X ×Z, the functions v : [−r,∞)→ R, y : [−r,∞)→ R,
z : [0,∞) → R given by v(t) = xϕ,ζ(t) − x∗, y(t) = yϕ,ζ(t), z(t) = zϕ,ζ(t) are solutions
of System (1.8), (1.9), (1.10) in the sense that (1.8) holds for all t > 0, (1.9) is satisfied
a.e. in [−ζ − 1,∞), (1.10) is valid for all t ≥ 0, and v0 = ϕ − x∗ ∈ X , z(0) = ζ. Note
that only xϕ,ζ is shifted by x∗, y

ϕ,ζ and zϕ,ζ are unchanged to get solutions of (1.8), (1.9),
(1.10) from that of (1.6), (1.2), (1.3). Therefore, theorem 3.10 for (1.6), (1.2), (1.3) in
the above specified case immediately gives existence and uniqueness of solutions for (1.8),
(1.9), (1.10). Moreover, it is natural to use vϕ,ζ , zϕ,ζ , yϕ,ζ for the unique solution of (1.8),
(1.9), (1.10) as well, where (ϕ, ζ) ∈ X × Z. Now, for each (ϕ, ζ) ∈ X × Z, the unique
solution v = vϕ,ζ : [−r,∞)→ R, z = zϕ,ζ : [0,∞)→ R of System (1.8), (1.9), (1.10) with
v0 = ϕ, z(0) = ζ can be determined as(

vϕ,ζt , zϕ,ζ(t)
)

= Ψ(t, ϕ+ x∗, ζ)− (x∗, 0), (4.1)

and we obtain

Proposition 4.1. Under Conditions (S1)–(S3), the solutions of System (1.8), (1.9),
(1.10) define the continuous semiflow

Θ : [0,∞)×X × Z 3 (t, ϕ, ζ) 7→ (vϕ,ζt , zϕ,ζ(t)) ∈ X × Z.

Moreover, ∥∥Θ
(
t, ϕ1, ζ1

)
−Θ

(
t, ϕ2, ζ2

)∥∥ ≤M
∥∥(ϕ1, ζ1

)
−
(
ϕ2, ζ2

)∥∥ et(1+L)
for all t ≥ 0, ϕ1, ϕ2 ∈ X , ζ1, ζ2 ∈ Z, with the same constants M > 0, L > 0 as given in
theorem 3.10 provided LG ≤ Lmin{1, a}.
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In addition to vϕ,ζ and zϕ,ζ , there exists a unique y = yϕ,ζ : [−r,∞)→ R with yt ∈ Y
for all t ≥ 0, y0 = γ(ϕ, ζ), (1.10) holds for all t ≥ 0, and (1.9) holds almost everywhere
on [−ζ − 1,∞).

In the sequel, when we write (v, z, y), we always mean that v = vϕ,ζ , z = zϕ,ζ , y = yϕ,ζ

for some (ϕ, ζ) ∈ X×Z. Recall also the function η = ηϕ,ζ : [0,∞) 3 t 7→ t−zϕ,ζ(t)−1 ∈ R
and η−1 = (ηϕ,ζ)−1 : [−ζ − 1,∞)→ R and their properties from proposition 3.8:

slope(η) ⊆ [c/b, c/a] , slope(η−1) ⊆ [a/c, b/c] . (4.2)

In particular η and η−1 are increasing functions with t − r ≤ η(t) ≤ t − 1 for all t ≥ 0,
and t+ 1 ≤ η−1(t) ≤ t+ r for all t ≥ −ζ − 1.

Define T0 = 2q/d.

Proposition 4.2. If τ1 ≥ −ζ − 1, τ2 ≥ τ1 + T0, and v(t) ≤ d/2 for all t ∈ [τ1, τ2], then
y(t) = 0 for all t ∈ [τ1 + T0, τ2]. If, in addition, τ2 ≥ τ1 + T0 + 1, then z(t) = 0 for all
t ∈ [τ1 + T0 + 1, τ2].

Proof. From equation (1.9) and from v(t) ≤ d/2, t ∈ [τ1, τ2], it follows that, if there
is τ∗ ∈ [τ1, τ2) with y(τ∗) = 0, then ẏ(t) ≤ 0 almost everywhere in [τ∗, τ2], and thus,
y(t) = 0 for all t ∈ [τ∗, τ2]. Consequently, either y(t) = 0 for all t ∈ [τ1, τ2], or there
exists a maximal τ∗∗ ∈ (τ1, τ2] with y(t) > 0 for all t ∈ [τ1, τ∗∗). In the first case the
statements of the proposition trivially hold. In the second case, by equation (1.9), ẏ(t) =
v(t) − d ≤ −d/2 almost everywhere in [τ1, τ∗∗]. As y(τ1) ∈ [0, q], it easily follows that
0 ≤ y(τ∗∗) ≤ q − (d/2)(τ∗∗ − τ1), and hence τ∗∗ ≤ τ1 + T0. Therefore, y(t) = 0 for all
t ∈ [τ1 + T0, τ2]. The statement for z can be obtained by using equation (1.10).

Observe that (0, 0) ∈ X × Z is a stationary point of the semiflow Θ generated by
System (1.8), (1.9), (1.10). Under Conditions (S1)–(S3), and assuming that (S4) does not
hold, and slightly more, that is

(S5) Re z < 0 for all zeros of the map C 3 λ 7→ λ+ f ′(0) + g′(0)e−λ ∈ C,

it is expected that (0, 0) is stable. In fact, combining propositions 4.1 and 4.2, local
stability is straightforward.

Theorem 4.3. Assume that Conditions (S1)–(S3), (S5) hold. Then the stationary point
(0, 0) ∈ X × Z of the semiflow Θ generated by System (1.8), (1.9), (1.10) is locally
asymptotically stable.

Proof. By proposition 4.1, for each (ϕ, ζ) ∈ X × Z the unique solution v = vϕ,ζ , z = zϕ,ζ

of System (1.8), (1.9), (1.10) satisfies

‖(vt, z(t))− (0, 0)‖ = ‖Θ(t, ϕ, ζ)−Θ(t, 0, 0)‖
≤M‖(ϕ, ζ)‖et(1+L) ≤M‖(ϕ, ζ)‖e(T0+1)(1+L)

for all t ∈ [0, T0 + 1].
As proposition 4.2 holds with τ1 = −1 and arbitrarily large τ2, if v(t) ≤ d/2 for all

t ≥ −r, then z(t) = 0 for all t ≥ −1 + T0 + 1 = T0, and, consequently,

v̇(t) = −f(v(t))− g(v(t− 1)) for all t > T0 + 1.
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A classical result for equations with constant delay (see e.g. [7, 9]) is that, under Condi-
tions (S1)–(S3), (S5), for each ε ∈ (0, d/2) there exists δ = δ(ε) ∈ (0, ε) with

max
−1≤s≤0

|v(T0 + 1 + s)| ≤ δ implies |v(t)| < ε for all t ≥ T0.

For given ε ∈ (0, d/2) choosing (ϕ, ζ) ∈ X × Z with ‖(ϕ, ζ)‖ < εe−(T0+1)(1+L)/M , it
should be clear that ‖(vt, z(t))‖ < ε follows for all t ≥ 0. That is, (0, 0) is locally stable.

Asymptotic stability follows in the same way by using again the constant delay result
from [7].

From this point throughout this section, we assume that Conditions (S1)–(S4) are
satisfied. Then instability of (0, 0) ∈ X ×Z can be easily obtained. We show after a series
of technical results that there exists a nontrivial slowly oscillating periodic solution (v, z)
of System (1.8), (1.9), (1.10). Here slow oscillation of (v, z) means that

t1 < t2 − z(t2)− 1

holds for any two zeros t1 < t2 of v.
Observe that equation (1.8) can be written as

v̇(t) = −f̃(v(t))v(t)− g̃(v(t− z(t)− 1))v(t− z(t)− 1). (4.3)

For (ϕ, ζ) ∈ X × Z consider v = vϕ,ζ , z = zϕ,ζ . Define

u = uϕ,ζ : [−r,∞) 3 t 7→ v(t) exp

(∫ t

0

f̃(v(s)) ds

)
∈ R and

C = Cϕ,ζ : [0,∞) 3 t 7→ g̃(v(t− z(t)− 1)) exp

(∫ t

t−z(t)−1
f̃(v(s)) ds

)
∈ R.

Setting c0 = g0, c1 = g1e
f1r, for all (ϕ, ζ) ∈ X × Z we have

C(t) ∈ [c0, c1] for all t ≥ 0.

Proposition 4.4. For each (ϕ, ζ) ∈ X × Z, the functions v = vϕ,ζ, z = zϕ,ζ u = uϕ,ζ

C = Cϕ,ζR are continuous, u is continuously differentiable on (0,∞), and

u̇(t) = −C(t)u(t− z(t)− 1) (t > 0) (4.4)

holds. In addition,

|u(t)| ≤ |v(t)| ≤ |u(t)|ef1r for all t ∈ [−r, 0],

|v(t)| ≤ |u(t)| ≤ |v(t)|ef1t for all t ≥ 0.
(4.5)

Proof. The continuity and differentiability properties are immediate from the definitions.
Differentiating u and using equation (4.3) for t > 0, we get

u̇(t) =
(
v̇(t) + f̃(v(t))v(t)

)
exp

(∫ t

0

f̃(v(s)) ds

)
= −g̃(v(t− z(t)− 1))v(t− z(t)− 1)

· exp

(∫ t−z(t)−1

0

f̃(v(s)) ds

)
exp

(∫ t

t−z(t)−1
f̃(v(s)) ds

)
= −C(t)u(t− z(t)− 1),

so equation (4.4) holds. The stated inequalities between |u(t)| and |v(t)| are easy conse-

quences of the definitions and the bounds on f̃ .
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Let

W =
{

(ϕ, ζ) ∈ X × Z
∣∣∣ ϕ(s) = 0 for all s ∈ [−r,−1− ζ],

[−ζ − 1, 0] 3 s 7→ ϕ(s)ef1s ∈ R is nondecreasing, ϕ(0) > 0
}

and W0 = W ∪ {(0, 0)}. Our plan is to define a return map on W0 and to show that it
has a nontrivial fixed point on W0 corresponding to a slowly oscillating periodic orbit.

Proposition 4.5. There exists a constant T2 > 1 such that for all (ϕ, ζ) ∈ W , v = vϕ,ζ

has at least two zeros in [0, T2]. More precisely, there exist t2 > t1 > 0 with t2 ≤ T2,
v(t) > 0 on [0, t1) ∪ (t2, η

−1(t2)], v(t1) = 0, v(t) < 0 on (t1, t2), v(t2) = 0, and v̇(t1) < 0,
v̇(t2) > 0. In addition, the function u = uϕ,ζ is nonnegative on [−r, 0], it is positive on
[0, t1)∪ (t2, η

−1(t2)], negative on (t1, t2), it is nonincreasing on [0, η−1(t1)], and increasing
on [η−1(t1), η

−1(t2)].

Proof. As v = vϕ,ζ and u = uϕ,ζ have the same zeros, it suffices to show the statement for
u = uϕ,ζ .

Let λ be a zero of λ 7→ λ+f ′(0)+g′(0)e−λ with Reλ > 0 guaranteed by hypothesis (S4).
Setting µ = λ+f ′(0), we have Reµ > 0 and µ+g′(0)ef

′(0)e−µ = 0. This is possible only if

g′(0)ef
′(0) > π/2 (see [7, Ch. XI.]). As f̃ , g̃ are continuous and f̃(0) = f ′(0), g̃(0) = g′(0),

there exists δ ∈ (0, d/2) such that

g̃(ξ1)e
f̃(ξ2) >

π

2
for |ξ1| ≤ δ, |ξ2| ≤ δ.

Observe that B/δ > 1. Define

s0 = r +
1

c0
log

Bef1r

δ
, s1 = s0 + T0 + 1, T1 = s1 + 7.

First, we prove that for all (ϕ, ζ) ∈ W , u = uϕ,ζ has at least one zero in [0, T1].
Indirectly, assume that there exists a (ϕ, ζ) ∈ W such that u(t) > 0 for all t ∈ [0, T1]. By
the definition of W and our assumption, u is nonnegative on [−r, T1]. From proposition
4.4 and equation (4.4) it follows that u̇(t) ≤ 0 for all t ∈ (0, T1]. Thus, u is monotone
nonincreasing on [0, T1]. In particular, u(t) ≤ u(t − z(t) − 1) for t ∈ [r, T1]. Then, again
by proposition 4.4,

u̇(t) ≤ −c0u(t) for all t ∈ [r, T1]. (4.6)

From v(r) ≤ B, u(r) ≤ Bef1r, inequality (4.6), Bef1re−c0(s0−r) = δ, s0 > r, we get

v(t) ≤ u(t) ≤ Bef1re−c0(t−r) ≤ Bef1re−c0(s0−r) = δ <
d

2
for all ∈ [s0, T1].

Applying proposition 4.2 with τ1 = s0, τ2 = T1, we find z(t) = 0 for all t ∈ [s1, T1]. This
means that equation (4.4) becomes

u̇(t) = −C(t)u(t− 1) for all t ∈ [s1, T1]

where, by v(t) ≤ δ for all t ∈ [s0, T1], and by the choice of δ,

C(t) = g̃(v(t− 1)) exp

(∫ t

t−1
f̃(v(s)) ds

)
≥ g̃(v(t− 1)) exp

(
min

s∈[t−1,t]
f̃(v(s))

)
>
π

2
.
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There exists a minimal integer N ≥ 1 with 4N ≥ s1 + 1. Clearly, 4N ≤ s1 +
5 and 4N + 2 ≤ T1 = s1 + 7. The function t 7→ sin((π/2)t) is positive on (4N, 4N + 2),
has zeros at 4N and 4N + 2. Define

wε(t) = ε sin
(π

2
t
)
, ε > 0, t ∈ R.

As u is positive on [4N, 4N + 2], there are a maximal ε = ε0 > 0 such that w(t) =
wε0(t) ≤ u(t) for all t ∈ [4N, 4N + 2], and a minimal t ∈ (4N, 4N + 2), denoted by t̂ with
w(t̂) = u(t̂). Now it is clear that

ẇ
(
t̂
)

= u̇
(
t̂
)
, and w(t) < u(t) for all t ∈

[
4N, t̂

)
.

From the monotonicity of u on [0, T1], it follows that ẇ(t̂) = u̇
(
t̂
)
≤ 0. Consequently,

t̂ ∈ [4N + 1, 4N + 2) and t̂− 1 ∈ [4N, 4N + 1). Hence we obtain 0 ≤ w(t̂− 1) < u(t̂− 1).
Therefore, by using C(t̂) > π/2, ẇ(t) = −(π/2)w(t− 1) and 0 ≤ w(t̂− 1) < u(t̂− 1),

we get

u̇
(
t̂
)

= −C
(
t̂
)
u
(
t̂− 1

)
< −π

2
w
(
t̂− 1

)
= ẇ

(
t̂
)
,

a contradiction to u̇(t̂) = ẇ(t̂). Thus, u has a zero t1 in [0, T1]. We may assume that t1 is
the minimal zero in [0, T1].

Observe that (ϕ, ζ) ∈ W and the definition of u imply the existence of an s∗ ∈
[−ζ−1, 0) such that u(s) = 0 for s ∈ [−r, s∗], and u(s) > 0 for s ∈ (s∗, 0]. Then it follows
that u is constant on [0, η−1(s∗)], and u̇(t) < 0 for all t ∈ (η−1(s∗), η−1(t1)). In particular
u̇(t1) < 0. Then from inequality (4.5) we conclude that t1 is the first zero of v in [0,∞)
and v̇(t1) < 0.

From u̇(t) < 0, t ∈ (η−1(s∗), η−1(t1)), u(t1) = 0, η−1(s∗) < t1, one finds u(t) < 0 for
t ∈ (t1, η

−1(t1)]. Since equation (4.4) is linear in u, a similar argument shows that v has
a second zero t2 in (t1, t1 + s2 + 7) for some s2 > 0, and v̇(t2) > 0.

Let (ϕ, ζ) ∈ W , v = vϕ,ζ , z = zϕ,ζ , u = uϕ,ζ . Proposition 4.5 allows us to define
t0, t1, t2 ∈ [−r, T2] and t∗0, t

∗
1, t
∗
2 as

t0 = t0(ζ) = −ζ − 1, t∗0 = η−1(t0) = 0,

t1 = t1(ϕ, ζ) = min{t > 0 | v(t) = 0}, t∗1 = t∗1(ϕ, ζ) = η−1(t1),

t2 = t2(ϕ, ζ) = min{t > t1 | v(t) = 0}, t∗2 = t∗2(ϕ, ζ) = η−1(t2).

By proposition 4.5, it also follows that

− r ≤ t0 = −ζ − 1 < t∗0 = 0 < t1 < t1 + 1 ≤ t∗1 < t2 < t∗2 ≤ T2 + r. (4.7)

The continuity of the functions (ϕ, ζ) 7→ tj(ϕ, ζ) plays an important role in the sequel.

Proposition 4.6. The functions

W 3 (ϕ, ζ) 7→ tj(ϕ, ζ) ∈ [−r, T2], W 3 (ϕ, ζ) 7→ t∗j(ϕ, ζ) ∈ [0, T2 + r]

are continuous for j ∈ {0, 1, 2}.

Proof. The continuous dependence of t0 on the initial functions is evident. Let (ϕ, ζ) ∈ W
and a sequence (ϕn, ζn)∞n=0 in W be given with (ϕn, ζn) → (ϕ, ζ) as n →∞ in the norm
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of C[−r,0] × R. Proposition 4.1 implies, with the notation v = vϕ,ζ , z = zϕ,ζ , vn = vϕ
n,ζn ,

zn = zϕ
n,ζn , that

vn(t)→ v(t) as n→∞ uniformly in t ∈ [−r, T2 + r],

zn(t)→ z(t) as n→∞ uniformly in t ∈ [0, T2 + r]. (4.8)

Then the right hand side of equation (1.8) with v = vn, z = zn tends to the right hand
side of (1.8) as n→∞ uniformly in t ∈ [0, T2 + r]. Consequently,

v̇n(t)→ v̇(t) as n→∞ uniformly in t ∈ (0, T2 + r].

It is elementary to show that these uniform convergences guarantee the continuity of
t1(ϕ, ζ) and t2(ϕ, ζ) in (ϕ, ζ) since t1 and t2 are simple zeros. Therefore, t1(ϕ, ζ) and
t2(ϕ, ζ) are continuous in (ϕ, ζ) ∈ W .

It also follows from (4.8) that

ηn(t)→ η(t) as n→∞ uniformly in t ∈ [0, T2 + r], (4.9)

where η = ηϕ,ζ , ηn = ηϕ
n,ζn . Define tn1 = t1 (ϕn, ζn) and tn,∗1 = (ηn)−1 (tn1 ). From

t1 = η(t∗1), t
n
1 = ηn(tn,∗1 ) and the Lipschitz property of η in (4.2), one obtains

|t1 − tn1 | = |η (t∗1)− ηn (tn,∗1 )| ≥ |η (t∗1)− η (tn,∗1 )| − |η (tn,∗1 )− ηn (tn,∗1 )|

≥ c

b
|t∗1 − t

n,∗
1 | − ‖η − ηn‖[0,T2+r] .

Hence

|t∗1 − t
n,∗
1 | ≤

b

c

(
|t1 − tn1 |+ ‖η − ηn‖[0,T2+r]

)
.

This shows tn,∗1 → t∗1, n → ∞, since tn1 → t1 by the first part of the proof, and ‖η −
ηn‖[0,T2+r] → 0 by (4.9).

The proof for tn,∗2 → t∗2 is analogous.

Define the map Γ : X × Z → X × Z by Γ(ϕ, ζ) = (ϕ̂, ζ), where ϕ̂(s) = ϕ(s) for
s ∈ [−ζ − 1, 0], and ϕ̂(s) = ϕ(−ζ − 1) for s ∈ [−r,−ζ − 1]. Clearly, Γ is continuous, and
‖Γ(ϕ, ζ)‖ ≤ ‖(ϕ, ζ)‖. The existence of t∗2 allows us to define a return map P : W0 → X×Z
by

P (ϕ, ζ) =

{
(0, 0) if (ϕ, ζ) = (0, 0),

Γ(Θ(t∗2, ϕ, ζ)) otherwise.

v

t2t1
t1

0t0=-ζ-1-r * t2
*

tt2-r
*

φ

Figure 2: The first component of the return map P .

Proposition 4.7. P is continuous, and P (W0) ⊆ W0, P (W ) ⊆ W .
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Proof. P (0, 0) = (0, 0) ∈ W0 trivially. Let (ϕ, ζ) ∈ W and v = vϕ,ζ , z = zϕ,ζ .
First we prove P (ϕ, ζ) = Γ(Θ(t∗2, ϕ, ζ)) ∈ W . It is obvious that Γ(Θ(t∗2, ϕ, ζ)) ∈ X ×Z.

As −z(t∗2)− 1 = t2 − t∗2, it remains to show that

[−z(t∗2)− 1, 0] 3 s 7→ v (t∗2 + s) ef1s ∈ R is monotone nondecreasing.

If s ∈ (−z(t∗2)− 1, 0] then v(t∗2 + s) > 0, v(η(t∗2 + s)) < 0, and

d

ds

(
v(t∗2 + s)ef1s

)
= v̇(t∗2 + s)ef1s + f1v(t∗2 + s)ef1s

= ef1s
[(
f1 − f̃(v(t∗2 + s))

)
v(t∗2 + s)− g̃(v(η(t∗2 + s)))v(η(t∗2 + s))

]
> 0.

Thus, P (ϕ, ζ) = Γ(Θ(t∗2, ϕ, ζ)) ∈ W whenever (ϕ, ζ) ∈ W .
The continuity of P at (ϕ, ζ) ∈ W follows from propositions 4.6 and 4.1.
Continuity of P at (0, 0) ∈ W0 is an easy consequence of proposition 4.1 since for

(ϕ, ζ) ∈ W and t∗2 = t∗2(ϕ, ζ) we have

‖P (ϕ, ζ)− P (0, 0)‖ = ‖Γ(Θ(t∗2(ϕ, ζ), ϕ, ζ))‖ ≤ ‖Θ(t∗2(ϕ, ζ), ϕ, ζ)‖
= ‖Θ(t∗2(ϕ, ζ), ϕ, ζ)−Θ(t∗2(ϕ, ζ), 0, 0)‖
≤M‖(ϕ, ζ)‖et∗2(1+L) ≤M‖(ϕ, ζ)‖e(T2+r)(1+L).

Let (ϕ, ζ) ∈ X ×Z and u = uϕ,ζ . Combining the definitions of u, X , f1, using equation
(4.4) and applying proposition 4.4 we obtain

lip(u|[−r,T2+r]) ≤ max
{

lip(u|[−r,0]), lip(u|[0,T2+r])
}

≤ max
{

lip(v0) + ‖v0‖[−r,0]f1, c1‖u‖[−r,T2+r]
}

≤ max
{
K1 + f1 max{−A,B}, c1ef1(T2+r) max{−A,B}

}
≤ K1 + (1 + c1)e

f1(T2+r) max{−A,B}.

Choose L1 > 0 such that

L1 ≥ K1 + (1 + c1)e
f1(T2+r) max{−A,B} and

2cL1

c0a
≥ max{1,−A,B}.

Then, clearly, lip(u|[−r,T2+r]) ≤ L1. Define

β =
2cL1

c0a
, ρ = 2T2+r and θ = β−2ρ.

Proposition 4.8. For all (ϕ, ζ) ∈ W ,

v(t∗2) ≥ θ (ϕ(0))ρ .

Proof. Let (ϕ, ζ) ∈ W , u = uϕ,ζ , η = ηϕ,ζ . Recall that u is monotone decreasing on [0, t∗1],
monotone increasing on [t∗1, t

∗
2], positive on [0, t1) ∪ (t2, t

∗
2], and negative on (t1, t2). In

addition, u(η(t)) < 0 for all t ∈ (t∗1, t
∗
2).

Define κ−1 = t∗2 and κj = η(κj−1) for j ∈ {0, . . . , J}, where J is the unique integer
such that κJ ∈ (t1, t

∗
1]. Let

mj = max
t∈[κj ,κj−1]

|u(t)|, j ∈ {0, . . . , J}.
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t2=κ1t1=τ0
0t0

u

t*

*κ1τ1 ......

t1=τ-1
t2=κ-1κJ-1κJτJ-1*τJ *

Figure 3: The sequences (κj)
J
j=−1 and (τj)

J∗
j=−1

.

Observe that, by v(t) = vϕ,ζ(t) ∈ [A,B], t ≥ 0, and inequality (4.5), we have mj ≤
ef1(T2+r) max{−A,B}, and hence mj ≤ L1, j ∈ {0, . . . , J}. By C(t) ∈ [c0, c1], t ≥ 0, and
equation (4.4),

mj ≥ u(κj−1)− u(κj) =

∫ κj−1

κj

u̇(t) dt = −
∫ κj−1

κj

C(t)u(η(t)) dt

≥ −c0
∫ κj−1

κj

u(η(t)) dt = −c0
∫ κj

κj+1

u(t) dη−1(t) ≥ −c0
a

c

∫ κj

κj+1

u(t) dt

for j ∈ {0, . . . , J − 1}. The last integral can be estimated with the area of a rectangular
triangle with height mj+1 and slope L1 since mj+1/L1 < 1 ≤ κj − κj+1. So, for j ∈
{0, . . . , J − 1}, we have

mj ≥ c0
a

c

∫ κj

κj+1

|u(t)| dt ≥ c0
a

c

m2
j+1

2L1

=
m2
j+1

β
.

As u is decreasing on [t1, t
∗
1], increasing on [t∗1, t

∗
2], and β > 1, by induction, we have

|u(t∗2)| = m0 ≥
m2J

J

β1+2+...+2J−1 ≥
(
mJ

β

)2J

=

(
|u(t∗1)|
β

)2J

. (4.10)

Similarly, define τ−1 = t∗1 and τj = η(τj−1) for j ∈ {0, . . . , J∗}, where J∗ is the unique
integer such that τJ∗ ∈ (t0, 0]. Let

µj = max
t∈[τj ,τj−1]

|u(t)|, j ∈ {0, . . . , J∗}.

Analogously to the above estimations, we have

|u(t∗1)| = µ0 ≥
µ2J

∗

J∗

β1+2+...+2J
∗−1
≥
(
µJ
β

)2J
∗

≥
(
|u(0)|
β

)2J
∗

. (4.11)

From η(t) ≤ t−1, we have J +J∗ ≤ T2 + r, and |u(0)| ≤ β by the choice of β. Combining
(4.10) and (4.11),

|u(t∗2)| ≥
(
|u(t∗1)|
β

)2J

≥ 1

β2J

(
|u(0)|
β

)2J+J
∗

≥ 1

β2T2+r

(
|u(0)|
β

)2T2+r

=
|u(0)|2T2+r

β2·2T2+r

comes. Using |u(0)| = ϕ(0) and v(t∗2) ≤ u(t∗2), our statement follows.

Define

δ0 =
d

2M
de−(T2+r)(1+L)e−f1r.
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Proposition 4.9. If (ϕ, ζ) ∈ X × Z with ‖ϕ‖[−r,0] ≤ δ0e
f1r then |v(t)| ≤ d/2 for all

t ∈ [−r, T2 + r].

Proof. Observe that Θ(t, 0, ζ) = (0, z0,ζ(t)), t ≥ 0, ζ ∈ Z. Let (ϕ, ζ) ∈ X × Z, and
v = vϕ,ζ , z = zϕ,ζ . Proposition 4.1 gives

‖vt‖[−r,0] ≤ ‖vt‖[−r,0] +
∣∣z(t)− z0,ζ(t)

∣∣ =
∥∥(vt, z(t))−

(
0, z0,ζ(t)

)∥∥
C[−r,0]×R

= ‖Θ(t, ϕ, ζ)−Θ(t, 0, ζ)‖C[−r,0]×R ≤M‖ϕ‖[−r,0]et(1+L)

≤M‖ϕ‖[−r,0]e(T2+r)(1+L) ≤
d

2

provided t ∈ [0, T2 + r] and ‖ϕ‖ ≤ δ0e
f1r.

Proposition 4.10. If (ϕ, ζ) ∈ W with ϕ(0) ≤ δ0, then z(t∗2) ≤ [ζ − d/c]+.

Proof. Let (ϕ, ζ) ∈ W with ϕ(0) ≤ δ0, and let v = vϕ,ζ , z = zϕ,ζ , y = yϕ,ζ .
From (ϕ, ζ) ∈ W it follows that 0 ≤ ϕ(s) ≤ ϕ(0)ef1r ≤ δ0e

f1r, s ∈ [−r, 0]. proposition
4.9 can be applied to get |v(t)| ≤ d/2 for all t ∈ [−r, T2 + r].

Recall that t0 = −ζ − 1, y(t0) = cζ, and y satisfies equation (1.9) a.e. in [t0,∞).
Moreover, z(t∗2) = (1/c)y(t∗2 − z(t∗2)− 1) = (1/c)y(t2).

Observe that if y(t) > 0 on an interval I ⊂ [t0, T2 + r] then, by |v(t)| ≤ d/2 on
[−r, T2 + r], we have ẏ(t) ≤ d/2 − d = −d/2 a.e. in I. It follows that either y(t2) = 0,
or y(t) > 0 for all t ∈ [t0, t2]. In case y(t2) = 0 the statement trivially holds since
z(t∗2) = (1/c)y(t2) = 0. Assume that y(t) > 0 for all t ∈ [t0, t2]. Then z(t∗2) > 0. By
inequality (4.5), t2 − t0 ≥ 2, we find

0 < z(t∗2) =
1

c
y(t2) =

1

c

(
y(t0) +

∫ t2

t0

ẏ(t) dt

)
≤ 1

c

(
cζ − d

2
(t2 − t0)

)
≤ ζ − d

c
.

In this case, ζ has to be greater than d/c.
Therefore, either ζ ∈ [0, d/c] and z(t∗2) = 0, or ζ > d/c and z(t∗2) ≤ ζ − d/c.

We need a function α ∈ C2([0, q/c],R) with the properties

(α1) α(0) = 0,

(α2) α′(ξ) > 0, α′′(ξ) > 0 for all ξ ∈ (0, q/c],

(α3) α(q/c) ≤ θ(δ0)
ρ,

moreover, in case d < q,

(α4) α
(
ξ − (d/c)

)
≤ θ
(
α(ξ)

)ρ
for all ξ ∈ [d/c, q/c].

Proposition 4.11. There exists α ∈ C2([0, q/c],R) such that (α1)–(α4) are satisfied.

Proof. If d ≥ q, we only need (α1)–(α3) to hold, and it is easy to find a function α
satisfying them.

Assume that d < q. We look for α in the form

α(ξ) = a1 exp

(
−a2 exp

(
a3
ξ

))
for ξ ∈

(
0,
q

c

]
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with some a1 > 0, a2 > 0, a3 > 0 determined later. For ξ ∈ (0, q/c], we have

α′(ξ) =
a1a2a3
ξ2

exp

(
a3
ξ
− a2 exp

(
a3
ξ

))
,

α′′(ξ) =
a1a2a3
ξ4

(
a2a3 exp

(
a3
ξ

)
− a3 − 2ξ

)
exp

(
a3
ξ
− a2 exp

(
a3
ξ

))
.

It is elementary to see that

α(ξ)→ 0, α′(ξ)→ 0, α′′(ξ)→ 0 as ξ → 0+.

Then, by setting α(0) = 0, it follows that α ∈ C2([0, q/c],R). Condition (α1) holds by
definition. The property for α′ in (α2) is obvious from the above form of α′(ξ). From the
above expression for α′′(ξ) it is clear that α′′(ξ) > 0 for all ξ ∈ (0, q/c] if

a2a3 exp

(
a3
ξ

)
> a3 + 2ξ for all ξ ∈

(
0,
q

c

]
,

which is guaranteed by a2a3 exp(a3c/q) > a3 + q/c, that is,

a2 >

(
1 + 2

q

a3c

)
exp

(
−a3c

q

)
. (4.12)

Property (α3) holds if

a1 ≤ θδρ0 exp

(
a2 exp

(
a3c

q

))
. (4.13)

Inequality (α4) is valid if

a1 exp

(
−a2 exp

(
a3

ξ − (d/c)

))
≤ θaρ1 exp

(
−a2ρ exp

(
a3
ξ

))
for all ξ ∈ (d/c, q/c]. This inequality holds if both

a1 ≤ θaρ1 and exp

(
a3

ξ − (d/c)

)
≥ ρ exp

(
a3
ξ

)
for all ξ ∈

(
d

c
,
q

c

]
are satisfied, that is, by ρ > 1,

a1 ≥ θ
1

1−ρ (4.14)

and

a3 ≥ ξ
( c
d
ξ − 1

)
log ρ for all ξ ∈

(
d

c
,
q

c

]
.

Since ξ 7→ ξ
(
(c/d)ξ − 1

)
log ρ is increasing on (d/c, q/c], the last inequality is guaranteed

by

a3 ≥
q

c

(q
d
− 1
)

log ρ. (4.15)

We have to find a1 > 0, a2 > 0, a3 > 0 so that all Inequalities (4.12), (4.13), (4.14)
and (4.15) are true.

First, fix a1 > 0 so that (4.14) is satisfied. Now, choose a∗3 > 0 such that (4.15) holds
for all a3 ≥ a∗3. In the next step, using that the expression on the right hand side of (4.12)
is monotone decreasing in a3, we can fix a2 > 0 such that (4.12) is valid for all a3 ≥ a∗3.
Finally, as a1 and a2 are fixed, one can find a sufficiently large a3 ≥ a∗3 so that (4.13)
holds as well. This completes the proof.
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With the α given in proposition 4.11, recall that K0 = (f1 + g1) max{−A,B}, K1 =
rK0, and the sets Wα,K0 , Wα,K1 , Vα,K1 are defined by Formulas (1.11), (1.12).

Proposition 4.12. The set Vα,K1 is a compact and convex subset of C[−1,0] × R.

Proof. Compactness of Vα,K1 follows in a straighforward way from the definition of Vα,K1

and from the Arzela–Ascoli theorem.
In order to show the convexity of Vα,K1 , let (ψ1, ζ1) and (ψ2, ζ2) be in Vα,K1 , and set

(ψ, ζ) = λ(ψ1, ζ1) + (1− λ)(ψ2, ζ2) with some λ ∈ [0, 1]. proposition 4.11 guarantees the
convexity of α. Hence

ψ(0) = λψ1(0) + (1− λ)ψ2(0) ≥ λα
(
ζ1
)

+ (1− λ)α
(
ζ2
)

≥ α
(
λζ1 + (1− λ)ζ2

)
= α(ζ).

All other properties of Vα,K1 are obviously preserved by the convex combination.

By definition, Wα,K1 ⊂ W0. Therefore, the map P is defined on Wα,K1 . We know that
W0 and W are invariant under P . The next result shows the invariance of Wα,K1 , and
slightly more since, by K0 < K1, Wα,K0 ⊆ Wα,K1 .

Proposition 4.13. P (Wα,K1) ⊆ Wα,K0.

Proof. We have P (0, 0) = (0, 0) ∈ Wα,K0 . Suppose (ϕ, ζ) ∈ Wα,K1 \ {(0, 0)}. Then
the inequality ϕ(0) ≥ α(ζ) and the nondecreasing property of [−r, 0] 3 s 7→ ϕ(s)ef1s ∈ R
combined imply that (ϕ, ζ) ∈ W . By proposition 4.7, P (ϕ, ζ) = Γ(Θ(t∗2, ϕ, ζ)) ∈ W . Thus,
two facts remain to show: lip(v̂t∗2) ≤ K0, and that P preserves the property ϕ(0) ≥ α(ζ),
i.e., v(t∗2) ≥ α(z(t∗2)).

From equation (4.3) and from vt ∈ X it follows that |v̇(t)| ≤ K0 for all t > 0. Hence
the definition of v̂t∗2 and 0 < t2 < t∗2 imply lip(v̂t∗2) ≤ K0.

By (ϕ, ζ) ∈ Wα,K1 \ {(0, 0)} ⊂ W we have ϕ(0) ≥ α(ζ), and want to prove v(t∗2) ≥
α(z(t∗2)). There are two cases.

Case 1. ϕ(0) ≥ δ0. Then, by proposition 4.8, properties (α2), (α3) of α, and z(t∗2) ∈
[0, q/c], one obtains

v(t∗2) ≥ θ(ϕ(0))ρ ≥ θ(δ0)
ρ ≥ α

(q
c

)
≥ α(z(t∗2)).

Case 2. ϕ(0) < δ0. proposition 4.10 gives z(t∗2) ≤ [ζ − d/c]+. If ζ ≤ d/c then z(t∗2) = 0,
and, by (α1), trivially v(t∗2) ≥ 0 = α(0) = α(z(t∗2)). If ζ > d/c then applying proposition
4.8, ϕ(0) ≥ α(ζ), (α4) and (α2), we conclude

v(t∗2) ≥ θ(ϕ(0))ρ ≥ θ(α(ζ))ρ ≥ α

(
ζ − d

c

)
= α

([
ζ − d

c

]+)
≥ α(z(t∗2)).

This completes the proof.

Define the subsets

H1 =
{

(ψ, ζ) ∈ C[−1,0] × Z
∣∣ ψ(−1) = 0

}
⊂ C[−1,0] × R

Hr =
{

(ϕ, ζ) ∈ C[−r,0] × Z
∣∣ ϕ(s) = 0 for all s ∈ [−r,−ζ − 1]

}
⊂ C[−r,0] × R

with the induced subspace topologies.

33



Introduce the streching map Q : H1 → Hr by Q(ψ, ζ) = (ϕ, ζ) so that

ϕ(s) =

{
ψ
(

s
ζ+1

)
if s ∈ [−ζ − 1, 0],

0 if s ∈ [−r,−ζ − 1],

and the squeezing map R : Hr → H1 by R(ϕ, ζ) = (ψ, ζ) so that

ψ(s) = ϕ((ζ + 1)s) for all s ∈ [−1, 0].

Proposition 4.14. The maps Q : H1 → Hr, R : Hr → H1 are continuous, and

Q (Vα,K1) ⊆ Wα,K1 , R (Wα,K0) ⊆ Vα,K1 .

Proof. In order to see the continuity of Q, let (ψ, ζ) ∈ H1,

(ψn, ζn)∞n=0 ∈ H1 with ‖(ψn, ζn)− (ψ, ζ)‖ → 0 as n→∞,

and let Q(ψ, ζ) = (ϕ, ζ) ∈ Hr, Q(ψn, ζn) = (ϕn, ζn) ∈ Hr, n ∈ N. By definition,
ϕ(s) = ϕn(s) for all s ∈ [−r,−max{ζ, ζn} − 1]. For s ∈ [−min{ζ, ζn} − 1, 0] we have

|ϕ(s)− ϕn(s)| =
∣∣∣∣ψ( s

ζ + 1

)
− ψn

(
s

ζn + 1

)∣∣∣∣
≤
∣∣∣∣ψ( s

ζ + 1

)
− ψ

(
s

ζn + 1

)∣∣∣∣+

∣∣∣∣ψ( s

ζn + 1

)
− ψn

(
s

ζn + 1

)∣∣∣∣
≤
∣∣∣∣ψ( s

ζ + 1

)
− ψ

(
s

ζn + 1

)∣∣∣∣+ ‖ψ − ψn‖[−1,0].

If s ∈ [−max{ζ, ζn} − 1,−min{ζ, ζn} − 1], then in case ζ ≥ ζn, one can get

|ϕ(s)− ϕn(s)| =
∣∣∣∣ψ( s

ζ + 1

)
− 0

∣∣∣∣ =

∣∣∣∣ψ( s

ζ + 1

)
− ψ(−1)

∣∣∣∣ ,
and in case ζ < ζn, we obtain

|ϕ(s)− ϕn(s)| =
∣∣∣∣0− ψn( s

ζn + 1

)∣∣∣∣
≤
∣∣∣∣ψ( s

ζn + 1

)
− ψn

(
s

ζn + 1

)∣∣∣∣+

∣∣∣∣ψ( s

ζn + 1

)∣∣∣∣
≤ ‖ψ − ψn‖[−1,0] +

∣∣∣∣ψ( s

ζn + 1

)
− ψ(−1)

∣∣∣∣
For fixed (ψ, ζ) ∈ H1, by using the uniform continuity of ψ, the above estimations yield
that ‖(ϕ, ζ)−(ϕn, ζn)‖ tends to zero as n tends to infinity. Since the choice of the sequence
(ψn, ζn) was arbitrary, this shows the continuity of Q at (ψ, ζ) ∈ H1. The continuity of
R can be obtained analogously.

The inclusion Q (Vα,K1) ⊆ Wα,K1 is obvious from the definitions of Vα,K1 , Wα,K1 and
from the fact that the streching does not increase the Lipschitz constant.

Similarly, to prove the inclusion R (Wα,K0) ⊆ Vα,K1 we have to check how the squeezing
changes the Lipschitz constant and the exponential property. From the definition of R it
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is clear that the Lipschitz constant of ψ ∈ C[−1,0], given by ψ(s) = ϕ((ζ+1)s), s ∈ [−1, 0],
can be at most ζ + 1 ≤ r times lip(ϕ) ≤ K0. The facts that

[−ζ − 1, 0] 3 s 7→ ϕ(s)ef1s ∈ R is nondecreasing and r ≥ ζ + 1

imply that the map

[−1, 0] 3 s 7→ ψ(s)ef1rs = ϕ((ζ + 1)s)ef1(ζ+1)sef1(r−ζ−1)s is nondecreasing

because it is the product of two nondecreasing functions.
This completes the proof.

Now we can define the new return map

Π : Vα,K1 ∈ (ψ, ζ) 7→ R ◦ P ◦Q(ψ, ζ) ∈ Vα,K1 .

In order to get the ejectivity of the fixed point (0, 0) of Π, we prove the following
proposition.

Proposition 4.15. There exists a constant γ1 > 0 with

sup
t≥0

∥∥∥vϕ,ζt ∥∥∥
[−r,0]

> γ1 for all (ϕ, ζ) ∈ W. (4.16)

Proof. 1. Recall that if (ϕ, ζ) ∈ W then the first two zeros t1(ϕ, ζ), t2(ϕ, ζ) of v = vϕ,ζ

and t∗2 = t∗2(ϕ, ζ) = η−1(t2(ϕ, ζ)) determine the return map P by

P (ϕ, ζ) = Γ (Θ (t∗2, ϕ, ζ)) =
(
v̂t∗2 , z (t∗2)

)
∈ W

where v̂t∗2(s) = vt∗2(s) for s ∈ [−z(t∗2) − 1, 0], and v̂t∗2(s) = 0 for s ∈ [−r,−z(t∗2) − 1]. Set
(ṽt, z̃(t)) = Θ(t, P (ϕ, ζ)), t ≥ 0. Proposition 4.1 implies that

ṽ(t) = v (t∗2 + t) (t ≥ −z (t∗2)− 1) and z̃(t) = z (t∗2 + t) (t ≥ 0). (4.17)

Replacing (ϕ, ζ) ∈ W with P (ϕ, ζ) ∈ W , using the Equalities (4.17) and induction, it
can be shown that the zeros of vϕ,ζ in [0,∞) form an increasing sequence (sk)

∞
k=1 with

sk+1 > sk + 1, and the iterates P k(ϕ, ζ) are given by

P k(ϕ, ζ) = Γ (Θ (s∗2k, ϕ, ζ)) =
(
v̂s∗2k , z (s∗2k)

)
∈ W

where s∗2k = η−1(s2k), k ∈ N. Moreover, for the solution (ṽkt , z̃
k(t)) = Θ(t, P k(ϕ, ζ)),

t ≥ 0, Relations (4.17) hold with ṽk, z̃k, s∗2k instead of ṽ, z̃, t∗2.
2. Choose k0 ∈ N so that 2k0 > T0. We claim that if (ϕ, ζ) ∈ W is given with

supt≥0 ‖v
ϕ,ζ
t ‖ ≤ d/2, then the solution (v, z), with initial condition (v0, z(0)) = P k0(ϕ, ζ) ∈

W , satisfies

z(t) = 0 for all t ≥ 0, sup
t≥0
‖vt‖[−r,0] ≤ sup

t≥0

∥∥∥vϕ,ζt ∥∥∥
[−r,0]

.

Let (ϕ, ζ) ∈ W be given with supt≥0 ‖v
ϕ,ζ
t ‖[−r,0] ≤ d/2. By proposition 4.2 with τ1 = −ζ−1

and τ2 arbitrarily large, zϕ,ζ(t) = 0 for all t ≥ T0. By Step 1,

v(t) = vϕ,ζ
(
s2k∗0 + t

) (
t ≥ −zϕ,ζ (s∗2k)− 1

)
, z(t) = z

(
s2k∗0 + t

)
(t ≥ 0).

As s∗2k0 ≥ s2k0 + 1 ≥ s1 + 2k0 − 1 + 1 > 2k0 > T0, the claim follows.
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3. Suppose that there is no γ1 with inequality (4.16). Then there exists a sequence
(ϕn, ζn)∞n=1 in W such that

sup
t≥0

∥∥∥vϕn,ζnt

∥∥∥
[−r,0]

≤ min

{
d

2
,

1

n

}
.

By Step 2, replacing (ϕn, ζn) with P k0(ϕn, ζn), we can assume without loss of generality
that zϕ

n,ζn(t) = 0 for all t ≥ 0, n ∈ N. Setting vn = vϕ
n,ζn , n ∈ N, we have

v̇n(t) = −f(vn(t))− g(vn(t− 1)) (t > 0). (4.18)

Then, for each n ∈ N, the construction of the iterates P j(ϕn, ζn), j ∈ N, gives a sequence
(tnk)∞k=0 such that

tn0 = −1, tnk + 1 < tnk+1, v
n (tnk) = 0,

{
vn(t) > 0 for t ∈

(
tn2k, t

n
2k+1

)
,

vn(t) < 0 for t ∈
(
tn2k+1, t

n
2k+2

)
.

(4.19)

for all integers k ≥ 0.
We claim that ∥∥∥vntnk+1

∥∥∥
[−1,0]

≤ ef1 |vn (tnk + 1)| for all k ∈ N. (4.20)

Recalling functions f̃ , g̃, equation (4.18) can be written in the form (4.3) with z(t) = 0.
Then, for k ∈ N, by using (4.19), we obtain

d

ds

[
vn (tn2k + s) ef1s

]
= v̇n (tn2k + s) ef1s + vn (tn2k + s) f1e

f1s

=
[(
f1 − f̃ (vn(tn2k + s))

)
vn(tn2k + s)− g̃ (vn(tn2k + s− 1)) vn(tn2k + s− 1)

]
ef1s ≥ 0

for all s ∈ [0, 1] because vn(tn2k + s) ≥ 0, 0 ≤ f̃(vn(tn2k + s)) ≤ f1, g̃(vn(tn2k + s − 1)) > 0
and vn(tn2k + s− 1) ≤ 0. Thus,

0 ≤ vn (tn2k + s) ≤ vn (tn2k + 1) ef1(1−s) ≤ vn (tn2k + 1) ef1 (s ∈ [0, 1]).

Analogously, for each k ∈ N,

0 ≥ vn
(
tn2k+1 + s

)
≥ vn

(
tn2k+1 + 1

)
ef1(1−s) ≥ vn

(
tn2k+1 + 1

)
ef1 (s ∈ [0, 1]).

This proves the claim.
By (S2), (4.18) and (4.19), we find that t 7→ |vn(t)| is a decreasing function on [tnk +

1, tnk+1] for all k ∈ N. This fact, combined with inequality (4.20) and the choice of
(ϕn, ζn)∞n=1, yields, for all n ∈ N, the existence of an integer k(n) > n such that

1

2
sup
s≥0

∣∣vn (tnk(n) + s
)∣∣ ≤ ∥∥∥vntn

k(n)
+1

∥∥∥
[−1,0]

≤ 1

n
. (4.21)

Observe that (4.19) implies vn
(
tnk(n) + 1

)
6= 0. For each n ∈ N, the function

wn : [−1,∞) 3 t 7→
vn
(
tnk(n) + 1 + t

)
∣∣∣vn (tnk(n) + 1

)∣∣∣
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satisfies |wn(0)| = 1, and, by inequality (4.20),

sup
t≥−1
|wn(t)| ≤ 1∣∣∣vn (tnk(n) + 1

)∣∣∣ sup
s≥0

∣∣vn (tnk(n) + s
)∣∣ ≤ 2

∥∥∥vntn
k(n)

+1

∥∥∥
[−1,0]∣∣∣vn (tnk(n) + 1
)∣∣∣ ≤ 2ef1 .

Moreover, equation (4.18), the definitions of f̃ , g̃ and wn imply

ẇn(t) = −f̃
(
vn
(
tnk(n) + 1 + t

))
wn(t)− g̃

(
vn
(
tnk(n) + t

))
wn(t− 1) (4.22)

for all t > 0. Hence |ẇn(t)| ≤ 2(f1 + g1)e
f1 for all t > 0.

We can apply the Arzela–Ascoli theorem and the Cantor diagonalization process for
the sequence (wn|[0,∞))

∞
n=1 of continuous functions to find a subsequence (nl)

∞
l=1 of N and

a continuous function w : [0,∞)→ R so that

wnl(t)→ w(t) as l→∞ uniformly in t on compact subsets of [0,∞).

From (4.21) and the definitions of f̃ , g̃ it follows that

f̃
(
vnl
(
tnlk(nl) + 1 + t

))
→ f ′(0) and g̃

(
vnl
(
tnlk(nl) + t

))
→ g′(0) as l→∞.

Hence the right-hand side of equation (4.22) converges to −f ′(0)w(t) − g′(0)w(t − 1)
uniformly on compact subsets of [1,∞). Consequently, w is differentiable on (1,∞), and
satisfies

ẇ(t) = −f ′(0)w(t)− g′(0)w(t− 1) (t > 1). (4.23)

So, we obtained a continuous w : [0,∞) → R so that |w(0)| = 1, |w(t)| ≤ 2ef1 for
all t ≥ 0, the restriction w|(1,∞) is differentiable and equation (4.23) holds. From (4.19)
observe that wn has at most one sign change on [0, 1], n ∈ N. Then w can have at most
one sign change on [0, 1] as well. By proposition 2.1 it follows that w is unbounded on
[0,∞). This is a contradiction, and the proof is complete.

Proposition 4.16. (0, 0) ∈ Vα,K1 is an ejective fixed point of Π.

Proof. As the maps Q and R act on (ψ, ζ) ∈ C[−1,0] × R and (ϕ, ζ) ∈ C[−r,0] × R, respec-
tively, such that the norms of ψ and ϕ are preserved, it suffices to show the ejectivity of
the fixed pont (0, 0) of P on Wα,K1 .

By proposition 4.1, and by the fact that (0, 0) is an equilibrium point, there exists
γ2 > 0 such that if (ϕ, ζ) ∈ W and ‖(ϕ, ζ)‖ = ‖ϕ‖[−r,0] + ζ < γ2 then∥∥∥(vϕ,ζt , zϕ,ζ(t)

)∥∥∥ =
∥∥∥vϕ,ζt ∥∥∥

[−r,0]
+ zϕ,ζ(t) < γ1 for all t ∈ [0, T2 + r].

Suppose that there exists (ϕ, ζ) ∈ W so that∥∥P k(ϕ, ζ)
∥∥ < γ2 for all k ∈ {0, 1, 2, . . .}. (4.24)

Let v = vϕ,ζ , z = zϕ,ζ . In Step 1 of the proof of proposition 4.15 we saw that the increasing
sequence (sk)

∞
k=1 of the zeros of v in (0,∞) determines the iterates P k(ϕ, ζ) by P k(ϕ, ζ) =

Γ(Θ(s∗2k, ϕ, ζ)) = (v̂s∗2k , z(s
∗
2k)), where s∗2k = η−1(s2k), k ∈ N. Moreover, 2 ≤ s∗2 ≤ T2 + r,

2 ≤ s∗2k+2 − s∗2k ≤ T2 + r, k ∈ N, and the solutions (vkt , z
k(t)) = Θ(t, P k(ϕ, ζ)) satisfy
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vk(t) = v(s∗2k + t), t ≥ −z(s∗2k) − s, zk(t) = z(s∗2k + t), t ≥ 0, k ≥ N. Combining these
facts with the choice of γ2 and assumption (4.24), it can be obtained by induction that∥∥∥vϕ,ζt ∥∥∥

[−r,0]
≤
∥∥∥vϕ,ζt ∥∥∥

[−r,0]
+ zϕ,ζ(t) < γ1 for all t ≥ 0.

This inequality contradicts the existence of γ1 > 0 with inequality (4.16).
Therefore, ejectivity of the trivial fixed point (0, 0) of P on Wα,K1 follows with the

open set Wα,K1 ∩ U , where

U = {(ϕ, ζ) ∈ C[−r,0] × R : ‖(ϕ, ζ)‖ < γ2}.

The proof is complete.

Now we are able to show the main result.

Theorem 4.17. Assume that Conditions (S1)–(S4) hold. Then System (1.8), (1.9),
(1.10) has a slowly oscillatory periodic solution.

Proof. By proposition 4.12 the set Vα,K1 is a compact and convex subset of the Banach
space C[−1,0] × R. Proposition ?? combined show that the map Π : Vα,K1 → Vα,K1 is
continuous. According to proposition 4.16 the fixed point (0, 0) of Π is ejective. Then
theorem B guarantees that Π has a nonejective fixed point (ψ∗, ζ∗) in Vα,K1 . By the
ejectivity of (0, 0), we have (ψ∗, ζ∗) 6= (0, 0), in particular ψ∗ 6= 0.

Define ϕ∗ ∈ C[−r,0] so that (ϕ∗, ζ∗) = Q(ψ∗, ζ∗). Let (ϕ∗∗, ζ∗∗) = P (ϕ∗, ζ∗). From
R(ϕ∗∗, ζ∗∗) = (ψ∗, ζ∗) one obtains ζ∗∗ = ζ∗. Therefore, ϕ∗∗(s) = 0 = ϕ∗(s) for all
s ∈ [−r,−ζ∗− 1]. Moreover, Q streches ψ∗ with the same factor ζ∗+ 1 as R squeezes ϕ∗∗.
Then necessarily

ϕ∗(s) = ψ∗
(

s

ζ∗ + 1

)
= ϕ∗∗

(
(ζ∗ + 1)

s

ζ∗ + 1

)
= ϕ∗∗(s)

for all s ∈ [−ζ∗ − 1, 0]. Therefore, (ϕ∗∗, ζ∗∗) = (ϕ∗, ζ∗), that is, (ϕ∗, ζ∗) = Q(ψ∗, ζ∗) is a
nontrivial fixed point of P .

The solution (vϕ
∗,ζ∗ , zϕ

∗,ζ∗) of System (1.8), (1.9), (1.10) defines a slowly oscillatory
periodic solution (v, z) : R→ R in the following way. As (ϕ∗, ζ∗) is a fixed point of P , the
restriction vϕ

∗,ζ∗ |[0,∞) of vϕ
∗,ζ∗ and zϕ

∗,ζ∗ are t∗2-periodic functions with t∗2 = t∗2(ϕ
∗, ζ∗) > 0.

A t∗2-periodic extension of vϕ
∗,ζ∗|[0,∞) and zϕ

∗,ζ∗ from [0,∞) to R give the slowly oscillating
periodic solution (v, z) : R→ R.

5 Examples

1. Consider System (1.4), (1.2), (1.3) with U ∈ C2((0,∞),R) and p ∈ C1((0,∞),R)
satisfying

U ′(ξ) > 0, U ′′(ξ) < 0, p(ξ) > 0, p′(ξ) > 0 for all ξ ≥ 0.

Then U ′′ − p′ < 0, so U ′ − p has at most one zero. Assume that there exists an x∗ > 0
with U ′(x∗)− p(x∗) = 0.

For fixed constants κ, a, b, c, q, r0, r1 with κ > 0, 0 < a < x∗ < c < b, q > 0, r0 ≥ 0,
r1 > 0 set K = κ[maxξ∈[a,b] ξU

′(ξ)+bp(b)]. Define X, Y, Z as in section 1 and G : X×Z →
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R by (1.7). Then U ∈ C2, p ∈ C1 imply Hypothesis (G1). (G2) obviously holds. As
ξ 7→ ξp(ξ) is increasing on (0,∞), Hypothesis (G3) requires

aU ′(a) > bp(b), bU ′(b) < ap(a). (5.1)

Under the above assumptions, theorem ?? yield that System (1.4), (1.2), (1.3) is well
posed both in X × Y and X ×Z, and all solutions can be extended to the right half line.

2. Now consider System (1.4), (1.2), (1.3) when r0 = 0, r1 = 1, c > 1, q > 0, and
U(ξ) = −ξ−α/α, p(ξ) = ξβ with some positive α and β. Then U ′(ξ) = ξ−α−1, ξU ′(ξ) =
ξ−α, ξp(ξ) = ξβ+1, and x∗ = 1. In our particular case condition (5.1) holds for some
0 < a < 1 < c < b if a−α > bβ+1 and b−α < aβ+1, or equivalently aαbβ+1 < 1 < aβ+1bα.
This can be true only if β + 1 < α.

In order to satisfy condition (5.1) we modify the function U close to zero. For ε ∈ (0, 1)
define

Uε(ξ) = − 1

αξα
− Vε(ξ), where Vε(ξ) =

{
exp

(
1
ξ

+ 1
ξ−ε

)
if 0 < ξ < ε,

0 if ξ ≥ ε.

Cleary, Vε and Uε are in C∞((0,∞),R), and ξU ′ε(ξ) = ξ−α + [ξ−1 + ξ/(ξ − ε)2]Vε(ξ) for
all ξ > 0. We want to find a, b such that 0 < a < 1 < c < b, and aU ′ε(a) > bβ+1 and
b−α < aβ+1. For given a > 0 choose b > 0 such that b−α = aβ+1/2, i.e., b = 21/αa−(β+1)/α.
Then b−α < aβ+1 holds. Inequality aU ′ε(a) > bβ+1 is satisfied if

aU ′ε(a) > 2
β+1
α a−

(β+1)2

α ,

which is valid if a > 0 is small enough, since aU ′ε(a)→∞ faster than a−(β+1)2/α as a→ 0+.
Consequently, for each fixed ε ∈ (0, 1), there exists a = aε ∈ (0, ε) so that, by choosing
a ∈ (0, aε) and b = 21/αa−(β+1)/α, condition (5.1) is valid with Uε instead of U . Clearly,
b→∞ as a→ 0+. In particular, we may achieve b > c.

Therefore, for each fixed ε ∈ (0, 1) and sufficiently small a ∈ (0, ε), theorem 3.10 is
applicable for System (1.4), (1.2), (1.3) with r0 = 0, r1 = 1, p(ξ) = ξβ and Uε instead
of U . For the new variable v = x − 1 we obtain System (1.8), (1.9), (1.10) with f(v) =
−κ [(v + 1)U ′ε(v + 1)− U ′(1)], g(v) = κ

[
(v + 1)β+1 − 1

]
, and d = c − 1 > 0. It is clear

that Conditions (S1)–(S3) hold with A = a − 1, B = b − 1. We have f ′(0) = κα and
g′(0) = κ(β + 1).

If α > β + 1 then (S5) holds. Indeed, let λ ∈ C with Reλ ≥ 0, and suppose
λ+κα+κ(β+1)e−λ = 0. Then κα ≤ |λ+κα| = |κ(β+1)e−λ| ≤ κ(β+1), a contradiction
to α > β + 1. Therefore, by theorem 4.3, the solution (0, 0) of System (1.8), (1.9), (1.10),
or equivalently, the solution (1, 0) of (1.4), (1.2), (1.3) is locally asymptotically stable.

Assume α < β+1. Then there exists ϑ0 ∈ (π/2, π) so that − cosϑ0 = α/(β+1). Define
κ0 = −(1/α)ϑ0 cotϑ0. For each κ > κ0 there exists ϑ1 ∈ (ϑ0, π) such that κα = −ϑ1 cotϑ1

since [π/2, π) 3 ϑ 7→ −ϑ cotϑ ∈ R increases from 0 to ∞. Then

κ(β + 1) =
β + 1

α
κα = − 1

cosϑ0

(−ϑ1 cotϑ1) =
− cosϑ1

− cosϑ0

ϑ1

sinϑ1

>
ϑ1

sinϑ1

,

and condition (2.3) is satisfied yielding (S4) for all κ > κ0. Thus, theorem 4.17 implies,
with the above particular choice of f, g, that System (1.8), (1.9), (1.10) has a slowly
oscillatory periodic solution provided κ > κ0 and α < β + 1 . Equivalently, if α < β + 1
and κ > κ0 then System (1.4), (1.2), (1.3) with r0 = 0, r1 = 1, p(ξ) = ξβ and Uε instead
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of U has a periodic solution (x, z) oscillating slowly around x∗ = 1. For this periodic
solution x, we claim that

x(t) ∈
[
(1 + κr)−

β+1
α , 1 + κr

]
for all t ∈ R. (5.2)

Let t1 ≥ 0 be such that x(t1) > 1 and x has a local maximum at t1. Then ẋ(t1) = 0. If
x(t) > 1 for all t ∈ [t1 − r, t1] then, by x(t1)U

′
ε(x(t1)) < 1 and x(t1 − z(t1) − 1) > 1, one

obtains
ẋ(t1) = κ

[
x(t1)U

′
ε(x(t1))− [x(t1 − z(t1)− 1)]β+1

]
< 0,

a contradiction. Therefore, there is a maximal t0 ∈ [t1 − r, t1) such that x(t0) = 1. An
integration gives

x(t1) = 1 +

∫ t1

t0

κ
[
x(t)U ′ε(x(t))− [x(t− z(t1)− 1)]β+1

]
dt ≤ 1 + κr,

and, since t1 was an arbitrary local maximum, we obtain the upper bound in (5.2). If
t2 ∈ R is such that x(t2) < 1 and x has a local minimum at t2, then ẋ(t2) = 0 and
x(t2)U

′
ε(x(t2)) = [x(t2− z(t2)− 1)]β+1. Hence, using U ′ε ≥ U ′ and x(t) ≤ 1 + κr for t ∈ R,

the inequality

[x(t2)]
−α = x(t2)U

′(x(t2)) ≤ x(t2)U
′
ε(x(t2)) ≤ [1 + κr]β+1

follows, yielding the lower bound in (5.2), because t2 was an arbitrary local minimum.
Consequently, if, for a fixed κ > 0, we choose ε > 0 so that ε < (1 + κr)−(β+1)/α,

a ∈ (0, ε), b > max{c, 1 + κr}, and condition (5.1) is satisfied, then all possible periodic
solutions (oscillating around x∗ = 1) of System (1.4), (1.2), (1.3), with r0 = 0, r1 = 1,
p(ξ) = ξβ and Uε instead of U have ranges in [(1 + κr)−(β+1)/α, 1 + κr] ⊂ (ε, b), where
Uε = U . In particular, the periodic solution obtained for the modified equation (i.e. with
Uε instead of U), is the solution of the original System (1.4), (1.2), (1.3) as well.
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Figure 4: A numerical solution showing periodicity with α = 3, β = 1, κ = 10, q = c =
1.01, x∗ = 1, r0 = 0, r1 = 1.
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