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Basic setup

We consider the following fundamental problem.
Sender: has a message, encodes it to a codeword, and sends it to
a recipient through a noisy channel. Some parts of the codeword
might get corrupted.
Recipient: decodes the received word. He wants to get the
original message.
Goal: construct a coding and decoding method that returns the
original message with high probability.
It is reasonable to suppose that our encoded messages, called
codewords, are just sequences of bits of the same length, so the
set C of codewords is a subset of Fn

2 (F2 denotes the field of two
elements) for some positive integer n.

Measuring the goodness of codes

Binary Symmetric Channel (BSC): the bits are corrupted
with a probability 0 ≤ p ≤ 1, independently of each other. This
p is called the bit error rate. If we have a BSC with p < 1/2
then the best possible decoding is just taking the codeword that
differs in the least number of bits from the received word.
A way to measure goodness: Let Pw,C denote the proba-
bility of wrongly decoding the codeword w ∈ C. The probability
that a randomly chosen codeword gets wrongly decoded is the
word error rate

PC = 1
|C|

∑
w∈C

Pw,C.

The smaller the probability PC, the better the code C.
Note that there exist other ways to measure the goodness of codes.

Example

Suppose that we have a BSC with bit error rate p. Let us have
four messages, and codewords of length 4. We wish to compare
some such codes in terms of the goodness defined above.
Fix C0 = {0000, 0011, 1100, 1111}. One can easily calculate
PC0 = 2p− p2. We take some other codes Ci ⊆ F4

2, i = 1, . . . , 5.
The following figure shows the functions PC0 − PCi

, i = 0, . . . , 5.
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Shannon’s theorems

Linear code: A code C ⊆ Fn
2 is said to be linear if C is a linear

subspace of Fn
2 . The dimension of the subspace C is called the

dimension of the linear code.
Balanced family of linear codes: Consider a family of linear
codes F with dimension k and length n. F is called balanced if
every 0 6= v ∈ Fn

2 is contained in the same number of codes in F .
Note that the set of k-dimensional subspaces of Fn

2 is a balanced
family of linear codes.
Entropy function: Consider the entropy function

h(p) = −p log2 p− (1− p) log2(1− p), 0 ≤ p ≤ 1.
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h(p) The function captures the
uncertainty of the outcome
depending on p.
• h(0) = 0 = min

0≤p≤1
h(p);

• h(1/2) = 1 = max
0≤p≤1

h(p);
• h(1) = 0 = min

0≤p≤1
h(p);

Shannon’s first theorem

Let 0 < R < 1 − h(p) and Fn be a balanced family of linear
codes with codewords of length n and dimension bRnc. Then

min
C∈Fn

PC → 0, n→∞.

Information rate: RC = dim(C)/n.
The theorem means that if the information rate is small enough,
then by increasing the length of the codewords one can achieve
arbitrarily small word error rate.

Shannon’s second theorem
If Cn ⊆ Fn

2 is a sequence of codes such that for some fixed K
1− h(p) < K ≤ RCn

≤ 1 holds, then lim
n→∞PCn

= 1.

Conclusion

Together the two theorems of Shannon mean that for a fixed bit
error rate p, the constant 1 − h(p) serves as a bound for which
the following holds. For a rate R < 1 − h(p) there exist linear
codes such that their word error rate gets arbitrarily close to 0.
On the other hand, for a rate bigger than 1 − h(p) one can not
find good long codes.
Roughly speaking, this means that it suffices to consider only
linear codes in terms of the goodness defined above. This is good
news, since linear codes have much more structure than arbitrary
codes, making them easier to deal with.
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