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Clones

Operation: An → A function (n-ary operation).

ith projection: πi (x1, . . . , xi , . . . xn) = xi .

Superposition (composition): substitute m-ary operations g1, . . . , gn into
an n-ary operation f to get a new m-ary operation f (g1, . . . , gn).

Definition
Clone:

a set of operations on a set A,
contains all projections,
closed under superpositions.

Examples: all operations on a set, all projections, ...
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Clones on a two element set
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Clones on a three element set

?
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Maximal clones

If clones in general are that difficult, we should investigate special ones...

Maximal clone: such a clone that the only larger one is the clone of all
operations

In 1966, I. G. Rosenberg classified the maximal clones (over finite sets) into
six classes.

For five of the six classes it has been shown that the clones of these classes
are finitely generated. (Generating is adding all the projections and taking
all possible superpositions.)

The sixth class is the clones of monotone operations of bounded partial
orders. For small partial orders, the finitely generatedness of the
corresponding clone has been shown.

The first problematic poset has turned out to be:
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Nonfinitely generated maximal clones found

In 1986, G. Tardos published an ingenious paper showing that the clone of
the poset above is NOT finitely generated. This was the first maximal
clone to be shown nonfinitely generated.
In 1993, L. Zádori generalised Tardos’s result for series-paralell posets.
No one has found nonfinitely generated maximal clones since, though one
may conjecture there are a lot of them.
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Main objective, difficulties and our approach

Goal: find more nonfinitely generated maximal clones!

Can we modify Tardos’s proof to be working on other posets?
Tardos’s proof heavily relies on a lemma in which he describes the so-called
obstacles of his poset. PROBLEM: obstacles are very difficult to describe in
general.

The crown posets—C4, C6, and C8:

For crowns, the obstacles can get very difficult, there is no known description of
them so far. → We need something instead of obstacles that we can understand.
→ critical relations → We described the critical relations of the crowns.

Ádám Kunos Critical relations of the 2k-crown poset Szeged, June 29, 2016 9 / 14



Main objective, difficulties and our approach

Goal: find more nonfinitely generated maximal clones!
Can we modify Tardos’s proof to be working on other posets?

Tardos’s proof heavily relies on a lemma in which he describes the so-called
obstacles of his poset. PROBLEM: obstacles are very difficult to describe in
general.

The crown posets—C4, C6, and C8:

For crowns, the obstacles can get very difficult, there is no known description of
them so far. → We need something instead of obstacles that we can understand.
→ critical relations → We described the critical relations of the crowns.

Ádám Kunos Critical relations of the 2k-crown poset Szeged, June 29, 2016 9 / 14



Main objective, difficulties and our approach

Goal: find more nonfinitely generated maximal clones!
Can we modify Tardos’s proof to be working on other posets?
Tardos’s proof heavily relies on a lemma in which he describes the so-called
obstacles of his poset.

PROBLEM: obstacles are very difficult to describe in
general.

The crown posets—C4, C6, and C8:

For crowns, the obstacles can get very difficult, there is no known description of
them so far. → We need something instead of obstacles that we can understand.
→ critical relations → We described the critical relations of the crowns.

Ádám Kunos Critical relations of the 2k-crown poset Szeged, June 29, 2016 9 / 14



Main objective, difficulties and our approach

Goal: find more nonfinitely generated maximal clones!
Can we modify Tardos’s proof to be working on other posets?
Tardos’s proof heavily relies on a lemma in which he describes the so-called
obstacles of his poset. PROBLEM: obstacles are very difficult to describe in
general.

The crown posets—C4, C6, and C8:

For crowns, the obstacles can get very difficult, there is no known description of
them so far. → We need something instead of obstacles that we can understand.
→ critical relations → We described the critical relations of the crowns.

Ádám Kunos Critical relations of the 2k-crown poset Szeged, June 29, 2016 9 / 14



Main objective, difficulties and our approach

Goal: find more nonfinitely generated maximal clones!
Can we modify Tardos’s proof to be working on other posets?
Tardos’s proof heavily relies on a lemma in which he describes the so-called
obstacles of his poset. PROBLEM: obstacles are very difficult to describe in
general.

The crown posets—C4, C6, and C8:

For crowns, the obstacles can get very difficult, there is no known description of
them so far. → We need something instead of obstacles that we can understand.
→ critical relations → We described the critical relations of the crowns.

Ádám Kunos Critical relations of the 2k-crown poset Szeged, June 29, 2016 9 / 14



Main objective, difficulties and our approach

Goal: find more nonfinitely generated maximal clones!
Can we modify Tardos’s proof to be working on other posets?
Tardos’s proof heavily relies on a lemma in which he describes the so-called
obstacles of his poset. PROBLEM: obstacles are very difficult to describe in
general.

The crown posets—C4, C6, and C8:

For crowns, the obstacles can get very difficult, there is no known description of
them so far. → We need something instead of obstacles that we can understand.
→ critical relations → We described the critical relations of the crowns.

Ádám Kunos Critical relations of the 2k-crown poset Szeged, June 29, 2016 9 / 14



Main objective, difficulties and our approach

Goal: find more nonfinitely generated maximal clones!
Can we modify Tardos’s proof to be working on other posets?
Tardos’s proof heavily relies on a lemma in which he describes the so-called
obstacles of his poset. PROBLEM: obstacles are very difficult to describe in
general.

The crown posets—C4, C6, and C8:

For crowns, the obstacles can get very difficult, there is no known description of
them so far.

→ We need something instead of obstacles that we can understand.
→ critical relations → We described the critical relations of the crowns.

Ádám Kunos Critical relations of the 2k-crown poset Szeged, June 29, 2016 9 / 14



Main objective, difficulties and our approach

Goal: find more nonfinitely generated maximal clones!
Can we modify Tardos’s proof to be working on other posets?
Tardos’s proof heavily relies on a lemma in which he describes the so-called
obstacles of his poset. PROBLEM: obstacles are very difficult to describe in
general.

The crown posets—C4, C6, and C8:

For crowns, the obstacles can get very difficult, there is no known description of
them so far. → We need something instead of obstacles that we can understand.

→ critical relations → We described the critical relations of the crowns.

Ádám Kunos Critical relations of the 2k-crown poset Szeged, June 29, 2016 9 / 14



Main objective, difficulties and our approach

Goal: find more nonfinitely generated maximal clones!
Can we modify Tardos’s proof to be working on other posets?
Tardos’s proof heavily relies on a lemma in which he describes the so-called
obstacles of his poset. PROBLEM: obstacles are very difficult to describe in
general.

The crown posets—C4, C6, and C8:

For crowns, the obstacles can get very difficult, there is no known description of
them so far. → We need something instead of obstacles that we can understand.
→ critical relations

→ We described the critical relations of the crowns.

Ádám Kunos Critical relations of the 2k-crown poset Szeged, June 29, 2016 9 / 14



Main objective, difficulties and our approach

Goal: find more nonfinitely generated maximal clones!
Can we modify Tardos’s proof to be working on other posets?
Tardos’s proof heavily relies on a lemma in which he describes the so-called
obstacles of his poset. PROBLEM: obstacles are very difficult to describe in
general.

The crown posets—C4, C6, and C8:

For crowns, the obstacles can get very difficult, there is no known description of
them so far. → We need something instead of obstacles that we can understand.
→ critical relations → We described the critical relations of the crowns.

Ádám Kunos Critical relations of the 2k-crown poset Szeged, June 29, 2016 9 / 14



Invariant relations of posets

Let P be a finite poset.

α ⊆ Pn is called invariant if for any monotone m-ary operation f and
x1, . . . , xm ∈ α: f (x1, . . . , xm) ∈ α holds, where f (x1, . . . , xm) is taken
componentwise.

Theorem
Let P be an arbitrary finite poset and α ⊆ Pn. Then α is invariant if and
only if there exists a finite poset Q and x1, . . . , xn ∈ Q for which

α = {(f (x1), f (x2), . . . , f (xn)) | f : Q → P monotone}.

Example. It is easy to see that the relation {(x , y) : ∃z such that z ≤ x , y}
is invariant for every poset.

Two examples for how the theorem works.
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Critical relations and obstacles

Definition
Critical relations are invariant relations that are not (non-trivial) direct
products and not (non-trivial) intersections of invariant relations.

For every critical relation α there exists a minimal Q and x1, . . . , xn
defining α. From minimality, we can get a tuple y = (y1, . . . , yn) ∈ Pn for
which the partial function Q → P : xi 7→ yi is not extendible monotonically
but for every Q ′ properly contained in Q, it is.
An obstacle for P is a pair (Q, f ), where Q is a poset and f is a partial
function that is not extendible but for all Q ′ properly contained in Q, it is.
We see that there is a connection between critical relations and obstacles:
to every critical relation we can assign an obstacle.
Tardos used the obstacles to decide if Q → T partial functions are
extendible monotonically or not.
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Tardos used the obstacles to decide if Q → T partial functions are
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Binary critical relations of crowns

Let P be an arbitrary finite poset and let x , y ∈ P be in the same connected
component. Let

dU(x , y) = min{n ∈ N0 : ∃ p0, . . . pn ∈ P : x ≤ p0 ≥ p1 ≤ p2 ≥ . . . pn = y},

dD(x , y) = min{n ∈ N0 : ∃ p0, . . . pn ∈ P : x ≥ p0 ≤ p1 ≥ p2 ≤ . . . pn = y}.

It is easy to see that |dU(x , y)− dD(x , y)| ≤ 1.
Let d(x , y) = (dU(x , y), dD(x , y)) and Rm,n = {(x , y) ∈ C 2

2k : d(x , y) ≤ (m, n)}.

Lemma
C2k ’s all nonempty binary invariant relations are Rm,n, where m and n are
nonnegative integeres with |m − n| ≤ 1.

Corollary
C2k ’s binary critical relations are those Rn,n+1 and Rn+1,n which are not full
relations, where n is a nonnegative integer.
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Critical relations of crowns

A tuple a = (a1, . . . , an) is called large if there is no (k + 1)-element
subfence of C2k that contains {a1, . . . , an}.

Let

R(a1,...,an) = Cn
2k \ {(σ(a1), . . . , σ(an)) : σ ∈ AutC2k}

Theorem
The critical relations of C2k are:

the unary ∅ relation,
the binary critical relations: those Rn,n+1 and Rn+1,n which are not full
relations, where n is a nonnegative integer, and
for all large range tuples a ∈ Cn

2k , the relations Ra.
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Thank you!
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