Definability in the embeddability ordering of finite directed graphs

Ádám Kunos

University of Szeged

AAA87 & CYA28, Linz, February 7, 2014

This research was realized in the frames of TÁMOP 4.2.4. A/2-11-1-2012-0001 "National Excellence Program—Elaborating and operating an inland student and researcher personal support system" The project was subsidized by the European Union and co-financed by the European Social Fund.

Ádám Kunos

AAA87 & CYA28

Linz, February 7, 2014

Ad	ám	١K	un	0

AAA87 & CYA28

Linz, February 7, 2014

э

Ad	ám	١K	un	0

AAA87 & CYA28

Linz, February 7, 2014

э

$$\{1\} = \{x : (\forall y)(x \leq y)\}$$

Ádám Kunos

AAA87 & CYA28

Linz, February 7, 2014

æ

$$\{1\} = \{x : (\forall y)(x \le y)\}$$

$$\{60\} = \{x : (\forall y)(y \le x)\}$$

Ádám Kunos

AAA87 & CYA28

Linz, February 7, 2014

æ

$$\{1\} = \{x : (\forall y)(x \le y)\}$$

$$\{60\} = \{x : (\forall y)(y \le x)\}$$

$$\{2, 3, 5\} =$$

æ

$$\{1\} = \{x : (\forall y)(x \le y)\}$$

$$\{60\} = \{x : (\forall y)(y \le x)\}$$

$$\{2,3,5\} = \{\text{the covers of } 1\}$$

æ

$$\{1\} = \{x : (\forall y)(x \le y)\}$$

$$\{60\} = \{x : (\forall y)(y \le x)\}$$

$$\{2,3,5\} = \{\text{the covers of } 1\}$$

 $\prec = \{(x, y) : x \leq y \land x \neq y \land (\forall z) (x \leq z \leq y \Rightarrow z = x \lor z = y)\}$

э

$$\{1\} = \{x : (\forall y)(x \le y)\}$$

$$\{60\} = \{x : (\forall y)(y \le x)\}$$

$$\{2,3,5\} = \{\text{the covers of } 1\}$$

$$= \{x : 1 \prec x\}$$

$$\prec = \{(x, y) : x \leq y \land x \neq y \land (\forall z) (x \leq z \leq y \Rightarrow z = x \lor z = y)\}$$

æ

$$\{1\} = \{x : (\forall y)(x \le y)\}$$

$$\{60\} = \{x : (\forall y)(y \le x)\}$$

$$\{2,3,5\} = \{\text{the covers of } 1\}$$

$$= \{x : 1 \prec x\}$$

$$\prec = \{(x,y) : x \leq y \land x \neq y \land (\forall z) (x \leq z \leq y \Rightarrow z = x \lor z = y)\}$$

$$\{3,5\}$$

æ

$$\prec = \{(x, y) : x \le y \land x \ne y \land (\forall z)(x \le z \le y \implies z = x \lor z = y)\}$$

$$\{3, 5\} = \{x : 1 \prec x, x \text{ has exactly two covers}\}$$

$$\{1\} = \{x : (\forall y)(x \le y)\}$$

$$\{60\} = \{x : (\forall y)(y \le x)\}$$

$$\{2, 3, 5\} = \{\text{the covers of } 1\}$$

$$= \{x : 1 \prec x\}$$

$$\begin{array}{l} \prec = \{(x,y) : x \leq y \ \land \ x \neq y \land (\forall z)(x \leq z \leq y \ \Rightarrow \ z = x \ \lor \ z = y)\} \\ \{3,5\} = \{x : 1 \prec x, \ x \text{ has exactly two covers}\} \\ \{3\} = \{x : ???\} \end{array}$$

æ

2 / 12

60

$$\begin{array}{l} \prec = \{(x,y) : x \leq y \ \land \ x \neq y \land (\forall z)(x \leq z \leq y \ \Rightarrow \ z = x \ \lor \ z = y)\} \\ \{3,5\} = \{x : 1 \prec x, \ x \text{ has exactly two covers}\} \\ \{3\} = \{x : ???\} \text{ Conjecture: NO suitable formula} \end{array}$$

First-order definability in substructure orderings

- J. Ježek and R. McKenzie, *Definability in substructure orderings, I: finite semilattices.* Algebra Universalis **61**, 2009, 59-75.
- J. Ježek and R. McKenzie, *Definability in substructure orderings, II: finite ordered sets.* Order **27**, 2010, 115-145.
- J. Ježek and R. McKenzie, *Definability in substructure orderings, III: finite distributive lattices.* Algebra Universalis **61**, 2009, 283-300.
- J. Ježek and R. McKenzie, *Definability in substructure orderings, IV: finite lattices.* Algebra Universalis **61**, 2009, 301-312.

Main concept: $A \leq B$ iff A is isomorphic to a substructure of B.

æ

 $G \leq G'$ if and only if there exists $\varphi: G \rightarrow G'$ injective graph homomorphism,

 $G \leq G'$ if and only if there exists $\varphi : G \rightarrow G'$ injective graph homomorphism, that is $(u, v) \in E(G) \Rightarrow (\varphi(u), \varphi(v)) \in E(G')$.

 $G \leq G'$ if and only if there exists $\varphi : G \rightarrow G'$ injective graph homomorphism, that is $(u, v) \in E(G) \Rightarrow (\varphi(u), \varphi(v)) \in E(G')$.

Example:

 $G \leq G'$ if and only if there exists $\varphi : G \rightarrow G'$ injective graph homomorphism, that is $(u, v) \in E(G) \Rightarrow (\varphi(u), \varphi(v)) \in E(G')$.

Example:

 $G \leq G'$ if and only if there exists $\varphi : G \rightarrow G'$ injective graph homomorphism, that is $(u, v) \in E(G) \Rightarrow (\varphi(u), \varphi(v)) \in E(G')$.

Example:

 $G \leq G'$ if and only if there exists $\varphi : G \rightarrow G'$ injective graph homomorphism, that is $(u, v) \in E(G) \Rightarrow (\varphi(u), \varphi(v)) \in E(G')$.

Example:

 \leq is reflexive, transitive, antisymmetric, so $(\mathcal{D};\leq)$ is a poset.

The "bottom" of the poset $(\mathcal{D}; \leq)$


```
Ádám Kunos
```

AAA87 & CYA28

Linz, February 7, 2014

The map $G \mapsto G^T$ (reversing the arrows) is a nontrivial automorphism of $(\mathcal{D}; \leq)$.

э

The map $G \mapsto G^T$ (reversing the arrows) is a nontrivial automorphism of $(\mathcal{D}; \leq)$.

Theorem

In $(\mathcal{D}; \leq)$, the set $\{G, G^T\}$ is definable for arbitrary $G \in \mathcal{D}$.

Ádám Kunos

AAA87 & CYA28

Linz, February 7, 2014 6 / 12

The map $G \mapsto G^{T}$ (reversing the arrows) is a nontrivial automorphism of $(\mathcal{D}; \leq)$.

Theorem

In $(\mathcal{D}; \leq)$, the set $\{G, G^T\}$ is definable for arbitrary $G \in \mathcal{D}$.

The map $G \mapsto G^T$ (reversing the arrows) is a nontrivial automorphism of $(\mathcal{D}; \leq)$.

Theorem

In $(\mathcal{D}; \leq)$, the set $\{G, G^T\}$ is definable for arbitrary $G \in \mathcal{D}$. In $(\mathcal{D}; \leq, A)$, every $G \in \mathcal{D}$ is definable.

The map $G \mapsto G^T$ (reversing the arrows) is a nontrivial automorphism of $(\mathcal{D}; \leq)$.

Theorem

In $(\mathcal{D}; \leq)$, the set $\{G, G^T\}$ is definable for arbitrary $G \in \mathcal{D}$. In $(\mathcal{D}; \leq, A)$, every $G \in \mathcal{D}$ is definable.

Corollary

The poset $(\mathcal{D}; \leq)$ has only one nontrivial automorphism, namely $G \mapsto G^T$. Therefore it's automorphism group is isomorphic to \mathbb{Z}_2 .

 $\mathcal{C}\mathcal{D}:$ a small category with:

• objects= O^{CD} : digraphs with vertices $\{1, \ldots, n\}$

3.5 3

 $\mathcal{C}\mathcal{D}:$ a small category with:

- objects= O^{CD} : digraphs with vertices $\{1, \ldots, n\}$
- morphisms: $A, B \in O^{CD}$: $CD(A, B) = \{(A, \alpha, B) : \alpha : A \to B \text{ homomorphism}\}$

 $\mathcal{C}\mathcal{D}:$ a small category with:

- objects= O^{CD} : digraphs with vertices $\{1, \ldots, n\}$
- morphisms: $A, B \in O^{CD}$: $CD(A, B) = \{(A, \alpha, B) : \alpha : A \to B \text{ homomorphism}\}$
- $id_A \in CD(A, A)$

э

- $\mathcal{C}\mathcal{D}:$ a small category with:
 - objects= O^{CD} : digraphs with vertices $\{1, \ldots, n\}$
 - morphisms: $A, B \in O^{CD}$: $CD(A, B) = \{(A, \alpha, B) : \alpha : A \to B \text{ homomorphism}\}$
 - $\mathsf{id}_A \in CD(A, A)$
 - $f = (A, \alpha, B)$, $g = (B, \beta, C)$: $fg = (A, \beta \circ \alpha, C)$

 $\mathcal{C}\mathcal{D}:$ a small category with:

- objects= O^{CD} : digraphs with vertices $\{1, \ldots, n\}$
- morphisms: $A, B \in O^{CD}$: $CD(A, B) = \{(A, \alpha, B) : \alpha : A \to B \text{ homomorphism}\}$
- $\mathsf{id}_A \in CD(A, A)$

•
$$f = (A, \alpha, B)$$
, $g = (B, \beta, C)$: $fg = (A, \beta \circ \alpha, C)$

Four constants:

•
$$\mathbf{E}_1 \in O^{\mathcal{CD}}$$
: $V(\mathbf{E}_1) = \{1\}, \ E(\mathbf{E}_1) = \emptyset,$

 $\mathcal{C}\mathcal{D}:$ a small category with:

- objects= O^{CD} : digraphs with vertices $\{1, \ldots, n\}$
- morphisms: $A, B \in O^{CD}$: $CD(A, B) = \{(A, \alpha, B) : \alpha : A \to B \text{ homomorphism}\}$
- $\mathsf{id}_A \in CD(A, A)$
- $f = (A, \alpha, B)$, $g = (B, \beta, C)$: $fg = (A, \beta \circ \alpha, C)$

Four constants:

• $\mathbf{E}_1 \in O^{CD}$: $V(\mathbf{E}_1) = \{1\}, \ E(\mathbf{E}_1) = \emptyset,$ • $\mathbf{I}_2 \in O^{CD}$: $V(\mathbf{I}_2) = \{1, 2\}, \ E(\mathbf{E}_1) = \{(1, 2)\},$

 $\mathcal{C}\mathcal{D}:$ a small category with:

- objects= O^{CD} : digraphs with vertices $\{1, \ldots, n\}$
- morphisms: $A, B \in O^{CD}$: $CD(A, B) = \{(A, \alpha, B) : \alpha : A \to B \text{ homomorphism}\}$
- $\mathsf{id}_A \in CD(A, A)$
- $f = (A, \alpha, B)$, $g = (B, \beta, C)$: $fg = (A, \beta \circ \alpha, C)$

Four constants:

- $\mathsf{E}_1 \in O^{\mathcal{CD}}$: $V(\mathsf{E}_1) = \{1\}, \ E(\mathsf{E}_1) = \emptyset$,
- $I_2 \in O^{CD}$: $V(I_2) = \{1, 2\}, E(E_1) = \{(1, 2)\},$
- $f_1 \in CD(E_1, I_2)$: $f_1 = (E_1, \{1 \mapsto 1\}, I_2)$,

 $\mathcal{C}\mathcal{D}:$ a small category with:

- objects= O^{CD} : digraphs with vertices $\{1, \ldots, n\}$
- morphisms: $A, B \in O^{CD}$: $CD(A, B) = \{(A, \alpha, B) : \alpha : A \to B \text{ homomorphism}\}$
- $\mathsf{id}_A \in CD(A, A)$

•
$$f = (A, \alpha, B)$$
, $g = (B, \beta, C)$: $fg = (A, \beta \circ \alpha, C)$

Four constants:

•
$$\mathsf{E}_1 \in O^{\mathcal{CD}}$$
: $V(\mathsf{E}_1) = \{1\}, \ E(\mathsf{E}_1) = \emptyset$,

•
$$I_2 \in O^{CD}$$
: $V(I_2) = \{1, 2\}, E(E_1) = \{(1, 2)\},$

•
$$f_1 \in CD(E_1, I_2)$$
: $f_1 = (E_1, \{1 \mapsto 1\}, I_2),$

•
$$f_2 \in CD(E_1, I_2)$$
: $f_2 = (E_1, \{1 \mapsto 2\}, I_2).$

A small category

 $\mathcal{C}\mathcal{D}:$ a small category with:

- objects= O^{CD} : digraphs with vertices $\{1, \ldots, n\}$
- morphisms: $A, B \in O^{CD}$: $CD(A, B) = \{(A, \alpha, B) : \alpha : A \to B \text{ homomorphism}\}$
- $\mathsf{id}_A \in CD(A, A)$
- $f = (A, \alpha, B), g = (B, \beta, C): fg = (A, \beta \circ \alpha, C)$

Four constants:

•
$$\mathbf{E}_1 \in O^{CD}$$
: $V(\mathbf{E}_1) = \{1\}, \ E(\mathbf{E}_1) = \emptyset$,
• $\mathbf{I}_2 \in O^{CD}$: $V(\mathbf{I}_2) = \{1, 2\}, \ E(\mathbf{E}_1) = \{(1, 2)\},$
• $\mathbf{f}_1 \in CD(\mathbf{E}_1, \mathbf{I}_2)$: $\mathbf{f}_1 = (\mathbf{E}_1, \{1 \mapsto 1\}, \mathbf{I}_2),$

•
$$f_2 \in CD(E_1, I_2)$$
: $f_2 = (E_1, \{1 \mapsto 2\}, I_2)$.

 $\mathcal{CD}'=\mathcal{CD}+$ these four constants

• $L_{CD'}$: first-order language of categories + the 4 constants

æ

- $L_{CD'}$: first-order language of categories + the 4 constants
- L_(D;≤,A): first-order language of posets + A

э

- $L_{CD'}$: first-order language of categories + the 4 constants
- $L_{(\mathcal{D};\leq,\mathcal{A})}$: first-order language of posets + A
- L_{\rightarrow} : first-order language of digraphs

э

- $L_{CD'}$: first-order language of categories + the 4 constants
- L_(D;≤,A): first-order language of posets + A
- L_{\rightarrow} : first-order language of digraphs
- L^2_{\rightarrow} : full second-order language of digraphs

- $L_{CD'}$: first-order language of categories + the 4 constants
- $L_{(\mathcal{D};\leq,\mathcal{A})}$: first-order language of posets + A
- L_{\rightarrow} : first-order language of digraphs
- L^2_{\rightarrow} : full second-order language of digraphs

Observation: $L_{CD'}$ can capture isomorphism and embeddability of digraphs.

- $L_{CD'}$: first-order language of categories + the 4 constants
- L_(D;≤,A): first-order language of posets + A
- L_{\rightarrow} : first-order language of digraphs
- L^2_{\rightarrow} : full second-order language of digraphs

Observation: $L_{CD'}$ can capture isomorphism and embeddability of digraphs.

A morphism $f \in CD(A, B)$ is

- injective iff: $\forall X \in O^{\mathcal{CD}} \ \forall g, h \in CD(X, A)$: $gf = hf \Leftrightarrow g = h$,
- surjective iff: $\forall X \in O^{CD} \ \forall g, h \in CD(B, X)$: $fg = fh \Leftrightarrow g = h$.

- $L_{CD'}$: first-order language of categories + the 4 constants
- $L_{(\mathcal{D};\leq,\mathcal{A})}$: first-order language of posets + A
- L_{\rightarrow} : first-order language of digraphs
- L^2_{\rightarrow} : full second-order language of digraphs

Observation: $L_{CD'}$ can capture isomorphism and embeddability of digraphs.

A morphism $f \in CD(A, B)$ is

- injective iff: $\forall X \in O^{\mathcal{CD}} \ \forall g, h \in CD(X, A)$: $gf = hf \Leftrightarrow g = h$,
- surjective iff: $\forall X \in O^{CD} \ \forall g, h \in CD(B, X)$: $fg = fh \Leftrightarrow g = h$.

This means all (n-ary) relations first-order definable in $(\mathcal{D}; \leq)$ are first-order definable in \mathcal{CD}' as well.

(*) *) *) *)

- $L_{CD'}$: first-order language of categories + the 4 constants
- $L_{(\mathcal{D};\leq,A)}$: first-order language of posets + A
- L_{\rightarrow} : first-order language of digraphs
- L^2_{\rightarrow} : full second-order language of digraphs

Observation: $L_{CD'}$ can capture isomorphism and embeddability of digraphs.

A morphism $f \in CD(A, B)$ is

- injective iff: $\forall X \in O^{\mathcal{CD}} \ \forall g, h \in CD(X, A)$: $gf = hf \Leftrightarrow g = h$,
- surjective iff: $\forall X \in O^{CD} \ \forall g, h \in CD(B, X)$: $fg = fh \Leftrightarrow g = h$.

This means all (n-ary) relations first-order definable in $(\mathcal{D}; \leq)$ are first-order definable in \mathcal{CD}' as well. We denote this fact by $\text{Def}[(\mathcal{D}; \leq)] \subseteq \text{Def}[\mathcal{CD}']$.

• • = • • = • =

- $L_{CD'}$: first-order language of categories + the 4 constants
- $L_{(\mathcal{D};\leq,A)}$: first-order language of posets + A
- L_{\rightarrow} : first-order language of digraphs
- L^2_{\rightarrow} : full second-order language of digraphs

Observation: $L_{CD'}$ can capture isomorphism and embeddability of digraphs.

A morphism $f \in CD(A, B)$ is

- injective iff: $\forall X \in O^{\mathcal{CD}} \ \forall g, h \in CD(X, A)$: $gf = hf \Leftrightarrow g = h$,
- surjective iff: $\forall X \in O^{CD} \ \forall g, h \in CD(B, X)$: $fg = fh \Leftrightarrow g = h$.

This means all (n-ary) relations first-order definable in $(\mathcal{D}; \leq)$ are first-order definable in \mathcal{CD}' as well. We denote this fact by $\text{Def}[(\mathcal{D}; \leq)] \subseteq \text{Def}[\mathcal{CD}']$. It is easy to show that $\text{Def}[(\mathcal{D}; \leq, A)] \subseteq \text{Def}[\mathcal{CD}']$ holds as well.

Within $(\mathcal{D}; \leq, A)$ the "inner structure" of the digraphs is unavailable by first order formulas.

э

$\mathsf{Def}[L_{\to}] \subseteq \mathsf{Def}[\mathcal{CD}']$

Within $(\mathcal{D}; \leq, A)$ the "inner structure" of the digraphs is unavailable by first order formulas. Surprisingly, in \mathcal{CD}' we can capture the inner structure of digraphs, meaning $\text{Def}[\mathcal{L}_{\rightarrow}] \subseteq \text{Def}[\mathcal{CD}']$.

$\mathsf{Def}[L_{\rightarrow}] \subseteq \mathsf{Def}[\mathcal{CD}']$

Within $(\mathcal{D}; \leq, A)$ the "inner structure" of the digraphs is unavailable by first order formulas. Surprisingly, in CD' we can capture the inner structure of digraphs, meaning $\text{Def}[L_{\rightarrow}] \subseteq \text{Def}[\mathcal{CD'}]$.

For any $G \in O^{CD}$,

Ádám Kunos

$\mathsf{Def}[L_{\to}] \subseteq \mathsf{Def}[\mathcal{CD}']$

Within $(\mathcal{D}; \leq, A)$ the "inner structure" of the digraphs is unavailable by first order formulas. Surprisingly, in \mathcal{CD}' we can capture the inner structure of digraphs, meaning $\text{Def}[\mathcal{L}_{\rightarrow}] \subseteq \text{Def}[\mathcal{CD}']$.

For any $G \in O^{CD}$, $CD(\mathbf{E}_1, G)$ is naturally bijective with G.

$\mathsf{Def}[\mathcal{L}_{\rightarrow}] \subseteq \mathsf{Def}[\mathcal{CD}']$

Within $(\mathcal{D}; \leq, A)$ the "inner structure" of the digraphs is unavailable by first order formulas. Surprisingly, in \mathcal{CD}' we can capture the inner structure of digraphs, meaning $\text{Def}[L_{\rightarrow}] \subseteq \text{Def}[\mathcal{CD}']$.

For any $G \in O^{CD}$, $CD(\mathbf{E}_1, G)$ is naturally bijective with G. Let

 $f = (\mathbf{E}_1, \{1 \mapsto x\}, G), \ g = (\mathbf{E}_1, \{1 \mapsto y\}, G) \ (x, y \in V(G)).$

$\mathsf{Def}[L_{\to}] \subseteq \mathsf{Def}[\mathcal{CD}']$

Within $(\mathcal{D}; \leq, A)$ the "inner structure" of the digraphs is unavailable by first order formulas. Surprisingly, in \mathcal{CD}' we can capture the inner structure of digraphs, meaning $\text{Def}[L_{\rightarrow}] \subseteq \text{Def}[\mathcal{CD}']$.

For any $G \in O^{CD}$, $CD(\mathbf{E}_1, G)$ is naturally bijective with G. Let

$$f = (\mathbf{E}_1, \{1 \mapsto x\}, G), \ g = (\mathbf{E}_1, \{1 \mapsto y\}, G) \ (x, y \in V(G)).$$

 $(x, y) \in E(G)$ holds iff

$\mathsf{Def}[L_{\to}] \subseteq \mathsf{Def}[\mathcal{CD}']$

Within $(\mathcal{D}; \leq, A)$ the "inner structure" of the digraphs is unavailable by first order formulas. Surprisingly, in \mathcal{CD}' we can capture the inner structure of digraphs, meaning $\text{Def}[L_{\rightarrow}] \subseteq \text{Def}[\mathcal{CD}']$.

For any $G \in O^{CD}$, $CD(\mathbf{E}_1, G)$ is naturally bijective with G. Let

$$f = (\mathsf{E}_1, \{1 \mapsto x\}, G), \ g = (\mathsf{E}_1, \{1 \mapsto y\}, G) \ (x, y \in V(G)).$$

 $(x, y) \in E(G)$ holds iff

Within $(\mathcal{D}; \leq, A)$ the "inner structure" of the digraphs is unavailable by first order formulas. Surprisingly, in CD' we can capture the inner structure of digraphs, meaning $\operatorname{Def}[L_{\rightarrow}] \subseteq \operatorname{Def}[\mathcal{CD}']$.

For any $G \in O^{CD}$, $CD(\mathbf{E}_1, G)$ is naturally bijective with G. Let

$$f = (\mathbf{E}_1, \{1 \mapsto x\}, G), \ g = (\mathbf{E}_1, \{1 \mapsto y\}, G) \ (x, y \in V(G)).$$

 $(x, y) \in E(G)$ holds iff

$\mathsf{Def}[\mathcal{L}_{\rightarrow}]\subseteq\mathsf{Def}[\mathcal{CD}']$

Within $(\mathcal{D}; \leq, A)$ the "inner structure" of the digraphs is unavailable by first order formulas. Surprisingly, in \mathcal{CD}' we can capture the inner structure of digraphs, meaning $\text{Def}[L_{\rightarrow}] \subseteq \text{Def}[\mathcal{CD}']$.

For any $G \in O^{\mathcal{CD}}$, $CD(\mathbf{E}_1, G)$ is naturally bijective with G. Let

$$f = (\mathbf{E}_1, \{1 \mapsto x\}, G), \ g = (\mathbf{E}_1, \{1 \mapsto y\}, G) \ (x, y \in V(G)).$$

 $(x, y) \in E(G)$ holds iff

$$\exists h \in CD(I_2, G): f_1h = f, f_2h = g.$$

Ádám Kunos

$\operatorname{Def}[\overline{L^2_{ ightarrow}}] \subseteq \operatorname{Def}[\overline{\mathcal{CD}'}]$

Adam Kunos	Adám	Kun	os
------------	------	-----	----

AAA87 & CYA28

Linz, February 7, 2014

Ξ.

10 / 12

イロン 不聞と 不同と 不同と

Example.

Ξ.

10 / 12

イロン 不聞と 不同と 不同と

Example. Let B and C the digraphs shown below.

3

Example. Let B and C the digraphs shown below. Let us consider the following (heterogeneous) relation:

$$R = \{(b_1, c_2), (b_2, c_3), (b_1, c_1)\} \subseteq B \times C.$$

3. 3

Example. Let B and C the digraphs shown below. Let us consider the following (heterogeneous) relation:

$$R = \{(b_1, c_2), (b_2, c_3), (b_1, c_1)\} \subseteq B \times C.$$

We represent R in the following way:

Example. Let B and C the digraphs shown below. Let us consider the following (heterogeneous) relation:

$$R = \{ (b_1, c_2), (b_2, c_3), (b_1, c_1) \} \subseteq B \times C.$$

We represent R in the following way:

Example. Let B and C the digraphs shown below. Let us consider the following (heterogeneous) relation:

$$R = \{(b_1, c_2), (b_2, c_3), (b_1, c_1)\} \subseteq B \times C.$$

We represent R in the following way:

Example. Let B and C the digraphs shown below. Let us consider the following (heterogeneous) relation:

$$R = \{(b_1, c_2), (b_2, c_3), (b_1, c_1)\} \subseteq B \times C.$$

We represent R in the following way:

$\mathsf{Def}[L^2_{\rightarrow}] \subseteq \mathsf{Def}[\mathcal{CD}']$

Example. Let B and C the digraphs shown below. Let us consider the following (heterogeneous) relation:

$$R = \{(b_1, c_2), (b_2, c_3), (b_1, c_1)\} \subseteq B \times C.$$

We represent R in the following way:

So R can be represented as (E_3, p_1, p_2) , where p_1, p_2 are two morphisms.

Adám K	unos
--------	------

Example. Let B and C the digraphs shown below. Let us consider the following (heterogeneous) relation:

$$R = \{(b_1, c_2), (b_2, c_3), (b_1, c_1)\} \subseteq B \times C.$$

We represent R in the following way:

So R can be represented as (E_3, p_1, p_2) , where p_1, p_2 are two morphisms.

Adám	Kunos

$\mathsf{Def}[L^2_{\rightarrow}] \subseteq \mathsf{Def}[\mathcal{CD}']$

Example. Let B and C the digraphs shown below. Let us consider the following (heterogeneous) relation:

$$R = \{(b_1, c_2), (b_2, c_3), (b_1, c_1)\} \subseteq B \times C.$$

We represent R in the following way:

So R can be represented as (E_3, p_1, p_2) , where p_1, p_2 are two morphisms.

Adám	Kun	os

We've seen:

- $\mathsf{Def}[(\mathcal{D}; \leq, A)] \subseteq \mathsf{Def}[\mathcal{CD}']$
- $\mathsf{Def}[L_{\rightarrow}] \subseteq \mathsf{Def}[\mathcal{CD}']$
- $\mathsf{Def}[\mathcal{L}^2_{\rightarrow}] \subseteq \mathsf{Def}[\mathcal{CD'}]$

э

We've seen:

- $\mathsf{Def}[(\mathcal{D}; \leq, A)] \subseteq \mathsf{Def}[\mathcal{CD}']$
- $\mathsf{Def}[L_{\rightarrow}] \subseteq \mathsf{Def}[\mathcal{CD}']$
- $\mathsf{Def}[\mathcal{L}^2_{\rightarrow}] \subseteq \mathsf{Def}[\mathcal{CD}']$

 $\mathcal{L_{CD'}}$ seems to be the strongest by far...

3. 3

We've seen:

- $\mathsf{Def}[(\mathcal{D}; \leq, A)] \subseteq \mathsf{Def}[\mathcal{CD}']$
- $\mathsf{Def}[L_{\rightarrow}] \subseteq \mathsf{Def}[\mathcal{CD}']$
- $\mathsf{Def}[\mathcal{L}^2_{\rightarrow}] \subseteq \mathsf{Def}[\mathcal{CD'}]$

 $L_{\mathcal{CD}'}$ seems to be the strongest by far...

Example

The set of connected and weakly connected digraphs are both first-order definable in $(\mathcal{D}; \leq, A)$.

We've seen:

- $\mathsf{Def}[(\mathcal{D}; \leq, A)] \subseteq \mathsf{Def}[\mathcal{CD}']$
- $\mathsf{Def}[L_{\rightarrow}] \subseteq \mathsf{Def}[\mathcal{CD}']$
- $\mathsf{Def}[\mathcal{L}^2_{\rightarrow}] \subseteq \mathsf{Def}[\mathcal{CD}']$

 $\mathcal{L_{CD'}}$ seems to be the strongest by far...

Example

The set of connected and weakly connected digraphs are both first-order definable in $(\mathcal{D}; \leq, A)$.

Theorem ($\mathsf{Def}[(\mathcal{D}; \leq, A)] \supseteq \mathsf{Def}[\mathcal{CD'}]$)

Every isomorphism-invariant relation that is first-order definable in \mathcal{CD}' is first-order definable in $(\mathcal{D}; \leq, A)$ (after factoring by isomorphism).

A B A A B A

Thank you for your attention!

AAA87 & CYA28

Linz, February 7, 2014

э