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First-order de�nability in posets

{1} = {x : (∀y)(x ≤ y)}

{60} = {x : (∀y)(y ≤ x)}

{2, 3, 5} =
= {x : 1 ≺ x}

{3, 5} = {x : 1 ≺ x , x has exactly two covers}

Proof: an automorphism: 1 7→ 1, 2 7→ 2, 4 7→ 4, 3 7→ 5, 5 7→ 3, 6 7→ 10,
10 7→ 6, 15 7→ 15, 30 7→ 30, 12 7→ 20, 20 7→ 12, 60 7→ 60.
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First-order de�nability in substructure orderings

J. Jeºek and R. McKenzie, De�nability in substructure orderings, I:

�nite semilattices. Algebra Universalis 61, 2009, 59-75.

J. Jeºek and R. McKenzie, De�nability in substructure orderings, II:

�nite ordered sets. Order 27, 2010, 115-145.

J. Jeºek and R. McKenzie, De�nability in substructure orderings, III:

�nite distributive lattices. Algebra Universalis 61, 2009, 283-300.

J. Jeºek and R. McKenzie, De�nability in substructure orderings, IV:

�nite lattices. Algebra Universalis 61, 2009, 301-312.

Main concept: A ≤ B i� A is isomorphic to a substructure of B .
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Directed graphs

D: Isomorphism types of �nite directed graphs (digraphs)

G ≤ G ′ if and only if there exists ϕ : G → G ′ injective graph
homomorphism, that is (u, v) ∈ E (G )⇒ (ϕ(u), ϕ(v)) ∈ E (G ′).

Example:
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homomorphism, that is (u, v) ∈ E (G )⇒ (ϕ(u), ϕ(v)) ∈ E (G ′).

Example:

≥

≤ is re�exive, transitive, antisymmetric, so (D;≤) is a poset.
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The �bottom� of the poset (D;≤)

E1

O2 E4

I2 E3

E2L1

F

G

H

E I J

K L
M N

O P Q

R S
T U

V W
Z A1 B1 C1D1E1

F1G1L1M1
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U2
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Some results

The map G 7→ GT (reversing the arrows) is a nontrivial automorphism of
(D;≤).

A:

Theorem

In (D;≤), the set {G ,GT} is de�nable for arbitrary G ∈ D.

In (D;≤,A),
every G ∈ D is de�nable.

Corollary

The poset (D;≤) has only one nontrivial automorphism, namely G 7→ GT .
Therefore it's automorphism group is isomorphic to Z2.
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A small category

CD: a small category with:

objects= OCD: digraphs with vertices {1, . . . , n}

morphisms: A,B ∈ OCD:
CD(A,B) = {(A, α,B) : α : A→ B homomorphism}
idA ∈ CD(A,A)

f = (A, α,B), g = (B, β,C ): fg = (A, β ◦ α,C )

Four constants:

E1 ∈ OCD : V (E1) = {1}, E (E1) = ∅,
I2 ∈ OCD : V (I2) = {1, 2}, E (E1) = {(1, 2)},
f1 ∈ CD(E1, I2) : f1 = (E1, {1 7→ 1}, I2),
f2 ∈ CD(E1, I2) : f2 = (E1, {1 7→ 2}, I2).

CD′ = CD + these four constants
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Some languages

LCD′ : �rst-order language of categories + the 4 constants

L(D;≤,A): �rst-order language of posets + A

L→: �rst-order language of digraphs

L2→: full second-order language of digraphs

Observation: LCD′ can capture isomorphism and embeddability of digraphs.

A morphism f ∈ CD(A,B) is

injective i�: ∀X ∈ OCD ∀g , h ∈ CD(X ,A) : gf = hf ⇔ g = h,

surjective i�: ∀X ∈ OCD ∀g , h ∈ CD(B,X ) : fg = fh⇔ g = h.

This means all (n-ary) relations �rst-order de�nable in (D;≤) are �rst-order
de�nable in CD′ as well. We denote this fact by Def[(D;≤)] ⊆ Def[CD′].
It is easy to show that Def[(D;≤,A)] ⊆ Def[CD′] holds as well.
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injective i�: ∀X ∈ OCD ∀g , h ∈ CD(X ,A) : gf = hf ⇔ g = h,

surjective i�: ∀X ∈ OCD ∀g , h ∈ CD(B,X ) : fg = fh⇔ g = h.

This means all (n-ary) relations �rst-order de�nable in (D;≤) are �rst-order
de�nable in CD′ as well. We denote this fact by Def[(D;≤)] ⊆ Def[CD′].
It is easy to show that Def[(D;≤,A)] ⊆ Def[CD′] holds as well.
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Def[L→] ⊆ Def[CD′]

Within (D;≤,A) the �inner structure� of the digraphs is unavailable by �rst
order formulas.

Surprisingly, in CD′ we can capture the inner structure of
digraphs, meaning Def[L→] ⊆ Def[CD′].

For any G ∈ OCD, CD(E1,G ) is naturally bijective with G . Let

f = (E1, {1 7→ x},G ), g = (E1, {1 7→ y},G ) (x , y ∈ V (G )).

(x , y) ∈ E (G ) holds i�

∃h ∈ CD(I2,G ) : f1h = f , f2h = g .

E1

I2
G

x

y

g

f

h

h

f2

f1

Ádám Kunos AAA87 & CYA28 Linz, February 7, 2014 9 / 12



Def[L→] ⊆ Def[CD′]

Within (D;≤,A) the �inner structure� of the digraphs is unavailable by �rst
order formulas. Surprisingly, in CD′ we can capture the inner structure of
digraphs, meaning Def[L→] ⊆ Def[CD′].

For any G ∈ OCD, CD(E1,G ) is naturally bijective with G . Let

f = (E1, {1 7→ x},G ), g = (E1, {1 7→ y},G ) (x , y ∈ V (G )).

(x , y) ∈ E (G ) holds i�

∃h ∈ CD(I2,G ) : f1h = f , f2h = g .

E1

I2
G

x

y

g

f

h

h

f2

f1

Ádám Kunos AAA87 & CYA28 Linz, February 7, 2014 9 / 12



Def[L→] ⊆ Def[CD′]

Within (D;≤,A) the �inner structure� of the digraphs is unavailable by �rst
order formulas. Surprisingly, in CD′ we can capture the inner structure of
digraphs, meaning Def[L→] ⊆ Def[CD′].

For any G ∈ OCD,

CD(E1,G ) is naturally bijective with G . Let

f = (E1, {1 7→ x},G ), g = (E1, {1 7→ y},G ) (x , y ∈ V (G )).

(x , y) ∈ E (G ) holds i�

∃h ∈ CD(I2,G ) : f1h = f , f2h = g .

E1

I2

G

x

y

g

f

h

h

f2

f1

Ádám Kunos AAA87 & CYA28 Linz, February 7, 2014 9 / 12



Def[L→] ⊆ Def[CD′]

Within (D;≤,A) the �inner structure� of the digraphs is unavailable by �rst
order formulas. Surprisingly, in CD′ we can capture the inner structure of
digraphs, meaning Def[L→] ⊆ Def[CD′].

For any G ∈ OCD, CD(E1,G ) is naturally bijective with G .

Let

f = (E1, {1 7→ x},G ), g = (E1, {1 7→ y},G ) (x , y ∈ V (G )).

(x , y) ∈ E (G ) holds i�

∃h ∈ CD(I2,G ) : f1h = f , f2h = g .

E1

I2

G

x

y

g

f

h

h

f2

f1

Ádám Kunos AAA87 & CYA28 Linz, February 7, 2014 9 / 12



Def[L→] ⊆ Def[CD′]

Within (D;≤,A) the �inner structure� of the digraphs is unavailable by �rst
order formulas. Surprisingly, in CD′ we can capture the inner structure of
digraphs, meaning Def[L→] ⊆ Def[CD′].

For any G ∈ OCD, CD(E1,G ) is naturally bijective with G . Let

f = (E1, {1 7→ x},G ), g = (E1, {1 7→ y},G ) (x , y ∈ V (G )).

(x , y) ∈ E (G ) holds i�

∃h ∈ CD(I2,G ) : f1h = f , f2h = g .

E1

I2

G
x

y

g

f

h

h

f2

f1

Ádám Kunos AAA87 & CYA28 Linz, February 7, 2014 9 / 12



Def[L→] ⊆ Def[CD′]

Within (D;≤,A) the �inner structure� of the digraphs is unavailable by �rst
order formulas. Surprisingly, in CD′ we can capture the inner structure of
digraphs, meaning Def[L→] ⊆ Def[CD′].

For any G ∈ OCD, CD(E1,G ) is naturally bijective with G . Let

f = (E1, {1 7→ x},G ), g = (E1, {1 7→ y},G ) (x , y ∈ V (G )).

(x , y) ∈ E (G ) holds i�

∃h ∈ CD(I2,G ) : f1h = f , f2h = g .

E1

I2

G
x

y

g

f

h

h

f2

f1

Ádám Kunos AAA87 & CYA28 Linz, February 7, 2014 9 / 12



Def[L→] ⊆ Def[CD′]

Within (D;≤,A) the �inner structure� of the digraphs is unavailable by �rst
order formulas. Surprisingly, in CD′ we can capture the inner structure of
digraphs, meaning Def[L→] ⊆ Def[CD′].

For any G ∈ OCD, CD(E1,G ) is naturally bijective with G . Let

f = (E1, {1 7→ x},G ), g = (E1, {1 7→ y},G ) (x , y ∈ V (G )).

(x , y) ∈ E (G ) holds i�

∃h ∈ CD(I2,G ) : f1h = f , f2h = g .

E1

I2
G

x

y

g

f

h

h

f2

f1

Ádám Kunos AAA87 & CYA28 Linz, February 7, 2014 9 / 12



Def[L→] ⊆ Def[CD′]

Within (D;≤,A) the �inner structure� of the digraphs is unavailable by �rst
order formulas. Surprisingly, in CD′ we can capture the inner structure of
digraphs, meaning Def[L→] ⊆ Def[CD′].

For any G ∈ OCD, CD(E1,G ) is naturally bijective with G . Let

f = (E1, {1 7→ x},G ), g = (E1, {1 7→ y},G ) (x , y ∈ V (G )).

(x , y) ∈ E (G ) holds i�

∃h ∈ CD(I2,G ) : f1h = f , f2h = g .

E1

I2
G

x

y

g

f

h

h

f2

f1

Ádám Kunos AAA87 & CYA28 Linz, February 7, 2014 9 / 12



Def[L→] ⊆ Def[CD′]

Within (D;≤,A) the �inner structure� of the digraphs is unavailable by �rst
order formulas. Surprisingly, in CD′ we can capture the inner structure of
digraphs, meaning Def[L→] ⊆ Def[CD′].

For any G ∈ OCD, CD(E1,G ) is naturally bijective with G . Let

f = (E1, {1 7→ x},G ), g = (E1, {1 7→ y},G ) (x , y ∈ V (G )).

(x , y) ∈ E (G ) holds i�

∃h ∈ CD(I2,G ) : f1h = f , f2h = g .

E1

I2
G

x

y

g

f

h

h

f2

f1

Ádám Kunos AAA87 & CYA28 Linz, February 7, 2014 9 / 12



Def[L2→] ⊆ Def[CD′]

Example. Let B and C the digraphs shown below. Let us consider the
following (heterogeneous) relation:

R = {, , } ⊆ B × C .

We repsesent R in the following way:

B C
b1 b2 c1

c2
c3

E3

So R can be represented as (E3, , ), where , are two morphisms.
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Final results

We've seen:

Def[(D;≤,A)] ⊆ Def[CD′]
Def[L→] ⊆ Def[CD′]
Def[L2→] ⊆ Def[CD′]

LCD′ seems to be the strongest by far...

Example

The set of connected and weakly connected digraphs are both �rst-order
de�nable in (D;≤,A).

Theorem
(
Def[(D;≤,A)] ⊇ Def[CD′]

)
Every isomorphism-invariant relation that is �rst-order de�nable in CD′ is
�rst-order de�nable in (D;≤,A) (after factoring by isomorphism).
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Thank you for your attention!
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