Definability in the embeddability ordering of finite directed graphs

Ádám Kunos

University of Szeged

AAA87 \& CYA28, Linz, February 7, 2014

This research was realized in the frames of TÁMOP 4.2.4. A/2-11-1-2012-0001 "National Excellence Program—Elaborating and operating an inland student and researcher personal support system" The project was subsidized by the European Union and co-financed by the European Social Fund.

First-order definability in posets

First-order definability in posets

\{1\}

First-order definability in posets

$$
\{1\}=\{x:(\forall y)(x \leq y)\}
$$

First-order definability in posets

$$
\begin{aligned}
& \{1\}=\{x:(\forall y)(x \leq y)\} \\
& \{60\}=\{x:(\forall y)(y \leq x)\}
\end{aligned}
$$

First-order definability in posets

$\{1\}=\{x:(\forall y)(x \leq y)\}$
$\{60\}=\{x:(\forall y)(y \leq x)\}$
$\{2,3,5\}=$

First-order definability in posets

$\{1\}=\{x:(\forall y)(x \leq y)\}$
$\{60\}=\{x:(\forall y)(y \leq x)\}$
$\{2,3,5\}=\{$ the covers of 1$\}$

First-order definability in posets

$$
\begin{aligned}
& \{1\}=\{x:(\forall y)(x \leq y)\} \\
& \{60\}=\{x:(\forall y)(y \leq x)\} \\
& \{2,3,5\}=\{\text { the covers of } 1\}
\end{aligned}
$$

$\prec=\{(x, y): x \leq y \wedge x \neq y \wedge(\forall z)(x \leq z \leq y \Rightarrow z=x \vee z=y)\}$

First-order definability in posets

$$
\left.\begin{array}{l}
\{1\}=\{x:(\forall y)(x \leq y)\} \\
\{60\}=\{x:(\forall y)(y \leq x)\} \\
\{2,3,5\}=\{\text { the covers of } 1\} \\
\quad=\{x: 1 \prec x\}
\end{array}\right\} \begin{aligned}
& \prec=\{(x, y): x \leq y \wedge x \neq y \wedge(\forall z)(x \leq z \leq y \Rightarrow z=x \vee z=y)\}
\end{aligned}
$$

First-order definability in posets

$\{1\}=\{x:(\forall y)(x \leq y)\}$
$\{60\}=\{x:(\forall y)(y \leq x)\}$
$\{2,3,5\}=\{$ the covers of 1$\}$

$$
=\{x: 1 \prec x\}
$$

$\prec=\{(x, y): x \leq y \wedge x \neq y \wedge(\forall z)(x \leq z \leq y \Rightarrow z=x \vee z=y)\}$
$\{3,5\}$

First-order definability in posets

$\{1\}=\{x:(\forall y)(x \leq y)\}$
$\{60\}=\{x:(\forall y)(y \leq x)\}$
$\{2,3,5\}=\{$ the covers of 1$\}$

$$
=\{x: 1 \prec x\}
$$

$\prec=\{(x, y): x \leq y \wedge x \neq y \wedge(\forall z)(x \leq z \leq y \Rightarrow z=x \vee z=y)\}$
$\{3,5\}=\{x: 1 \prec x, x$ has exactly two covers $\}$

First-order definability in posets

$$
\left.\begin{array}{l}
\{1\}=\{x:(\forall y)(x \leq y)\} \\
\{60\}=\{x:(\forall y)(y \leq x)\} \\
\{2,3,5\}=\{\text { the covers of } 1\} \\
\quad=\{x: 1 \prec x\}
\end{array}\right\} \begin{aligned}
& \prec=\{(x, y): x \leq y \wedge x \neq y \wedge(\forall z)(x \leq z \leq y \Rightarrow z=x \vee z=y)\} \\
& \{3,5\}=\{x: 1 \prec x, x \text { has exactly two covers }\} \\
& \{3\}=\{x: ? ? ?\}
\end{aligned}
$$

First-order definability in posets

$$
\left.\begin{array}{l}
\{1\}=\{x:(\forall y)(x \leq y)\} \\
\{60\}=\{x:(\forall y)(y \leq x)\} \\
\{2,3,5\}=\{\text { the covers of } 1\} \\
\quad=\{x: 1 \prec x\}
\end{array}\right\} \begin{aligned}
& \prec=\{(x, y): x \leq y \wedge x \neq y \wedge(\forall z)(x \leq z \leq y \Rightarrow z=x \vee z=y)\} \\
& \{3,5\}=\{x: 1 \prec x, x \text { has exactly two covers }\} \\
& \{3\}=\{x: ? ? ?\} \text { Conjecture: NO suitable formula }
\end{aligned}
$$

First-order definability in posets

$$
\begin{aligned}
& \{1\}=\{x:(\forall y)(x \leq y)\} \\
& \{60\}=\{x:(\forall y)(y \leq x)\} \\
& \begin{aligned}
\{2,3,5\} & =\{\text { the covers of } 1\} \\
& =\{x: 1 \prec x\}
\end{aligned}
\end{aligned}
$$

$\prec=\{(x, y): x \leq y \wedge x \neq y \wedge(\forall z)(x \leq z \leq y \Rightarrow z=x \vee z=y)\}$
$\{3,5\}=\{x: 1 \prec x, x$ has exactly two covers $\}$
$\{3\}=\{x$: ???\} Conjecture: NO suitable formula
Proof: an automorphism: $1 \mapsto 1,2 \mapsto 2,4 \mapsto 4,3 \mapsto 5,5 \mapsto 3,6 \mapsto 10$, $10 \mapsto 6,15 \mapsto 15,30 \mapsto 30,12 \mapsto 20,20 \mapsto 12,60 \mapsto 60$.

First-order definability in substructure orderings

- J. Ježek and R. McKenzie, Definability in substructure orderings, I: finite semilattices. Algebra Universalis 61, 2009, 59-75.
- J. Ježek and R. McKenzie, Definability in substructure orderings, II: finite ordered sets. Order 27, 2010, 115-145.
- J. Ježek and R. McKenzie, Definability in substructure orderings, III: finite distributive lattices. Algebra Universalis 61, 2009, 283-300.
- J. Ježek and R. McKenzie, Definability in substructure orderings, IV: finite lattices. Algebra Universalis 61, 2009, 301-312.

Main concept: $A \leq B$ iff A is isomorphic to a substructure of B.

Directed graphs

\mathcal{D} : Isomorphism types of finite directed graphs (digraphs)

Directed graphs

\mathcal{D} : Isomorphism types of finite directed graphs (digraphs)
$G \leq G^{\prime}$ if and only if there exists $\varphi: G \rightarrow G^{\prime}$ injective graph homomorphism,

Directed graphs

\mathcal{D} : Isomorphism types of finite directed graphs (digraphs)
$G \leq G^{\prime}$ if and only if there exists $\varphi: G \rightarrow G^{\prime}$ injective graph homomorphism, that is $(u, v) \in E(G) \Rightarrow(\varphi(u), \varphi(v)) \in E\left(G^{\prime}\right)$.

Directed graphs

\mathcal{D} : Isomorphism types of finite directed graphs (digraphs)
$G \leq G^{\prime}$ if and only if there exists $\varphi: G \rightarrow G^{\prime}$ injective graph homomorphism, that is $(u, v) \in E(G) \Rightarrow(\varphi(u), \varphi(v)) \in E\left(G^{\prime}\right)$.

Example:

Directed graphs

\mathcal{D} : Isomorphism types of finite directed graphs (digraphs)
$G \leq G^{\prime}$ if and only if there exists $\varphi: G \rightarrow G^{\prime}$ injective graph homomorphism, that is $(u, v) \in E(G) \Rightarrow(\varphi(u), \varphi(v)) \in E\left(G^{\prime}\right)$.

Example:

Directed graphs

\mathcal{D} : Isomorphism types of finite directed graphs (digraphs)
$G \leq G^{\prime}$ if and only if there exists $\varphi: G \rightarrow G^{\prime}$ injective graph homomorphism, that is $(u, v) \in E(G) \Rightarrow(\varphi(u), \varphi(v)) \in E\left(G^{\prime}\right)$.

Example:

Directed graphs

\mathcal{D} : Isomorphism types of finite directed graphs (digraphs)
$G \leq G^{\prime}$ if and only if there exists $\varphi: G \rightarrow G^{\prime}$ injective graph homomorphism, that is $(u, v) \in E(G) \Rightarrow(\varphi(u), \varphi(v)) \in E\left(G^{\prime}\right)$.

Example:

\leq is reflexive, transitive, antisymmetric, so $(\mathcal{D} ; \leq)$ is a poset.

The "bottom" of the poset ($\mathcal{D} ; \leq$)

Some results

The map $G \mapsto G^{T}$ (reversing the arrows) is a nontrivial automorphism of ($\mathcal{D} ; \leq$).

Some results

The map $G \mapsto G^{T}$ (reversing the arrows) is a nontrivial automorphism of ($\mathcal{D} ; \leq$).

Theorem

$\operatorname{In}(\mathcal{D} ; \leq)$, the set $\left\{G, G^{T}\right\}$ is definable for arbitrary $G \in \mathcal{D}$.

Some results

The map $G \mapsto G^{T}$ (reversing the arrows) is a nontrivial automorphism of ($\mathcal{D} ; \leq$).

Theorem

$\operatorname{In}(\mathcal{D} ; \leq)$, the set $\left\{G, G^{T}\right\}$ is definable for arbitrary $G \in \mathcal{D}$.

Some results

The map $G \mapsto G^{T}$ (reversing the arrows) is a nontrivial automorphism of ($\mathcal{D} ; \leq$).

Theorem

In $(\mathcal{D} ; \leq)$, the set $\left\{G, G^{T}\right\}$ is definable for arbitrary $G \in \mathcal{D} . \ln (\mathcal{D} ; \leq, A)$, every $G \in \mathcal{D}$ is definable.

Some results

The map $G \mapsto G^{T}$ (reversing the arrows) is a nontrivial automorphism of ($\mathcal{D} ; \leq$).

Theorem

$\operatorname{In}(\mathcal{D} ; \leq)$, the set $\left\{G, G^{T}\right\}$ is definable for arbitrary $G \in \mathcal{D} . \ln (\mathcal{D} ; \leq, A)$, every $G \in \mathcal{D}$ is definable.

Corollary

The poset ($\mathcal{D} ; \leq$) has only one nontrivial automorphism, namely $G \mapsto G^{T}$. Therefore it's automorphism group is isomorphic to \mathbb{Z}_{2}.

A small category

$\mathcal{C D}$: a small category with:

- objects $=O^{\mathcal{C D}}:$ digraphs with vertices $\{1, \ldots, n\}$

A small category

$\mathcal{C D}$: a small category with:

- objects $=O^{\mathcal{C D}}$: digraphs with vertices $\{1, \ldots, n\}$
- morphisms: $A, B \in O^{\mathcal{C D}}$:
$C D(A, B)=\{(A, \alpha, B): \alpha: A \rightarrow B$ homomorphism $\}$

A small category

$\mathcal{C D}$: a small category with:

- objects $=O^{\mathcal{C D}}$: digraphs with vertices $\{1, \ldots, n\}$
- morphisms: $A, B \in O^{\mathcal{C D}}$:
$C D(A, B)=\{(A, \alpha, B): \alpha: A \rightarrow B$ homomorphism $\}$
- $\operatorname{id}_{A} \in C D(A, A)$

A small category

$\mathcal{C D}$: a small category with:

- objects $=O^{\mathcal{C D}}$: digraphs with vertices $\{1, \ldots, n\}$
- morphisms: $A, B \in O^{\mathcal{C D}}$:
$C D(A, B)=\{(A, \alpha, B): \alpha: A \rightarrow B$ homomorphism $\}$
- $\operatorname{id}_{A} \in C D(A, A)$
- $f=(A, \alpha, B), g=(B, \beta, C): f g=(A, \beta \circ \alpha, C)$

A small category

$\mathcal{C D}$: a small category with:

- objects $=O^{\mathcal{C D}}$: digraphs with vertices $\{1, \ldots, n\}$
- morphisms: $A, B \in O^{\mathcal{C D}}$:
$C D(A, B)=\{(A, \alpha, B): \alpha: A \rightarrow B$ homomorphism $\}$
- $\operatorname{id}_{A} \in C D(A, A)$
- $f=(A, \alpha, B), g=(B, \beta, C): f g=(A, \beta \circ \alpha, C)$

Four constants:

- $\mathbf{E}_{1} \in O^{\mathcal{C D}}: V\left(\mathbf{E}_{1}\right)=\{1\}, E\left(\mathbf{E}_{1}\right)=\emptyset$,

A small category

$\mathcal{C D}$: a small category with:

- objects $=O^{\mathcal{C D}}$: digraphs with vertices $\{1, \ldots, n\}$
- morphisms: $A, B \in O^{\mathcal{C D}}$:
$C D(A, B)=\{(A, \alpha, B): \alpha: A \rightarrow B$ homomorphism $\}$
- $\operatorname{id}_{A} \in C D(A, A)$
- $f=(A, \alpha, B), g=(B, \beta, C): f g=(A, \beta \circ \alpha, C)$

Four constants:

- $\mathbf{E}_{1} \in O^{\mathcal{C D}}: V\left(\mathbf{E}_{1}\right)=\{1\}, E\left(\mathbf{E}_{1}\right)=\emptyset$,
- $\mathbf{I}_{2} \in O^{\mathcal{C D}}: V\left(\mathbf{I}_{2}\right)=\{1,2\}, E\left(\mathbf{E}_{1}\right)=\{(1,2)\}$,

A small category

$\mathcal{C D}$: a small category with:

- objects $=O^{\mathcal{C D}}$: digraphs with vertices $\{1, \ldots, n\}$
- morphisms: $A, B \in O^{\mathcal{C D}}$:
$C D(A, B)=\{(A, \alpha, B): \alpha: A \rightarrow B$ homomorphism $\}$
- $\operatorname{id}_{A} \in C D(A, A)$
- $f=(A, \alpha, B), g=(B, \beta, C): f g=(A, \beta \circ \alpha, C)$

Four constants:

- $\mathbf{E}_{1} \in O^{\mathcal{C D}}: V\left(\mathbf{E}_{1}\right)=\{1\}, E\left(\mathbf{E}_{1}\right)=\emptyset$,
- $\mathbf{I}_{2} \in O^{\mathcal{C D}}: V\left(\mathbf{I}_{2}\right)=\{1,2\}, E\left(\mathbf{E}_{1}\right)=\{(1,2)\}$,
- $\mathbf{f}_{1} \in C D\left(\mathbf{E}_{1}, \mathbf{l}_{2}\right): \mathbf{f}_{1}=\left(\mathbf{E}_{1},\{1 \mapsto 1\}, \mathbf{l}_{2}\right)$,

A small category

$\mathcal{C D}$: a small category with:

- objects $=O^{\mathcal{C D}}$: digraphs with vertices $\{1, \ldots, n\}$
- morphisms: $A, B \in O^{\mathcal{C D}}$:
$C D(A, B)=\{(A, \alpha, B): \alpha: A \rightarrow B$ homomorphism $\}$
- $\operatorname{id}_{A} \in C D(A, A)$
- $f=(A, \alpha, B), g=(B, \beta, C): f g=(A, \beta \circ \alpha, C)$

Four constants:

- $\mathbf{E}_{1} \in O^{\mathcal{C D}}: V\left(\mathbf{E}_{1}\right)=\{1\}, E\left(\mathbf{E}_{1}\right)=\emptyset$,
- $\mathbf{I}_{2} \in O^{\mathcal{C D}}: V\left(\mathbf{I}_{2}\right)=\{1,2\}, E\left(\mathbf{E}_{1}\right)=\{(1,2)\}$,
- $\mathbf{f}_{1} \in C D\left(\mathbf{E}_{1}, \mathbf{l}_{2}\right): \mathbf{f}_{1}=\left(\mathbf{E}_{1},\{1 \mapsto 1\}, \mathbf{l}_{2}\right)$,
- $\mathbf{f}_{2} \in C D\left(\mathbf{E}_{1}, \mathbf{l}_{2}\right): \mathbf{f}_{2}=\left(\mathbf{E}_{1},\{1 \mapsto 2\}, \mathbf{l}_{2}\right)$.

A small category

$\mathcal{C D}$: a small category with:

- objects $=O^{\mathcal{C D}}$: digraphs with vertices $\{1, \ldots, n\}$
- morphisms: $A, B \in O^{\mathcal{C D}}$:
$C D(A, B)=\{(A, \alpha, B): \alpha: A \rightarrow B$ homomorphism $\}$
- $\operatorname{id}_{A} \in C D(A, A)$
- $f=(A, \alpha, B), g=(B, \beta, C): f g=(A, \beta \circ \alpha, C)$

Four constants:

- $\mathbf{E}_{1} \in O^{\mathcal{C D}}: V\left(\mathbf{E}_{1}\right)=\{1\}, E\left(\mathbf{E}_{1}\right)=\emptyset$,
- $\mathbf{I}_{2} \in O^{\mathcal{C D}}: V\left(\mathbf{I}_{2}\right)=\{1,2\}, E\left(\mathbf{E}_{1}\right)=\{(1,2)\}$,
- $\mathbf{f}_{1} \in C D\left(\mathbf{E}_{1}, \mathbf{l}_{2}\right): \mathbf{f}_{1}=\left(\mathbf{E}_{1},\{1 \mapsto 1\}, \mathbf{I}_{2}\right)$,
- $\mathbf{f}_{2} \in C D\left(\mathbf{E}_{1}, \mathbf{l}_{2}\right): \mathbf{f}_{2}=\left(\mathbf{E}_{1},\{1 \mapsto 2\}, \mathbf{l}_{2}\right)$.
$\mathcal{C D} \mathcal{D}^{\prime}=\mathcal{C D}+$ these four constants

Some languages

- $L_{\mathcal{C D}}$: first-order language of categories + the 4 constants

Some languages

- $L_{\mathcal{C D}}$: first-order language of categories + the 4 constants
- $L_{(\mathcal{D} ; \leq, A)}$: first-order language of posets $+A$

Some languages

- $L_{\mathcal{C D}}$: first-order language of categories + the 4 constants
- $L_{(\mathcal{D} ; \leq, A)}$: first-order language of posets $+A$
- L_{\rightarrow} : first-order language of digraphs

Some languages

- $L_{\mathcal{C D}^{\prime}}$: first-order language of categories + the 4 constants
- $L_{(\mathcal{D} ; \leq, A)}$: first-order language of posets $+A$
- L_{\rightarrow} : first-order language of digraphs
- L_{\rightarrow}^{2} : full second-order language of digraphs

Some languages

- $L_{\mathcal{C D}}$: first-order language of categories + the 4 constants
- $L_{(\mathcal{D} ; \leq, A)}$: first-order language of posets $+A$
- L_{\rightarrow} : first-order language of digraphs
- L_{\rightarrow}^{2} : full second-order language of digraphs

Observation: $L_{\mathcal{C D}}$ can capture isomorphism and embeddability of digraphs.

Some languages

- $L_{\mathcal{C D}}$: first-order language of categories + the 4 constants
- $L_{(\mathcal{D} ; \leq, A)}$: first-order language of posets $+A$
- L_{\rightarrow} : first-order language of digraphs
- L_{\rightarrow}^{2} : full second-order language of digraphs

Observation: $L_{\mathcal{C D}^{\prime}}$ can capture isomorphism and embeddability of digraphs.
A morphism $f \in C D(A, B)$ is

- injective iff: $\forall X \in O^{\mathcal{C D}} \forall g, h \in C D(X, A): g f=h f \Leftrightarrow g=h$,
- surjective iff: $\forall X \in O^{\mathcal{C D}} \forall g, h \in C D(B, X): f g=f h \Leftrightarrow g=h$.

Some languages

- $L_{\mathcal{C D}}$: first-order language of categories + the 4 constants
- $L_{(\mathcal{D} ; \leq, A)}$: first-order language of posets $+A$
- L_{\rightarrow} : first-order language of digraphs
- L_{\rightarrow}^{2} : full second-order language of digraphs

Observation: $L_{\mathcal{C D}^{\prime}}$ can capture isomorphism and embeddability of digraphs.
A morphism $f \in C D(A, B)$ is

- injective iff: $\forall X \in O^{\mathcal{C D}} \forall g, h \in C D(X, A): g f=h f \Leftrightarrow g=h$,
- surjective iff: $\forall X \in O^{\mathcal{C D}} \forall g, h \in C D(B, X): f g=f h \Leftrightarrow g=h$.

This means all (n -ary) relations first-order definable in ($\mathcal{D} ; \leq$) are first-order definable in $\mathcal{C D}{ }^{\prime}$ as well.

Some languages

- $L_{\mathcal{C D}}$: first-order language of categories + the 4 constants
- $L_{(\mathcal{D} ; \leq, A)}$: first-order language of posets $+A$
- L_{\rightarrow} : first-order language of digraphs
- L_{\rightarrow}^{2} : full second-order language of digraphs

Observation: $L_{\mathcal{C D}^{\prime}}$ can capture isomorphism and embeddability of digraphs.
A morphism $f \in C D(A, B)$ is

- injective iff: $\forall X \in O^{\mathcal{C D}} \forall g, h \in C D(X, A): g f=h f \Leftrightarrow g=h$,
- surjective iff: $\forall X \in O^{\mathcal{C D}} \forall g, h \in C D(B, X): f g=f h \Leftrightarrow g=h$.

This means all (n -ary) relations first-order definable in ($\mathcal{D} ; \leq$) are first-order definable in $\mathcal{C D}^{\prime}$ as well. We denote this fact by $\operatorname{Def}[(\mathcal{D} ; \leq)] \subseteq \operatorname{Def}\left[\mathcal{C D}^{\prime}\right]$.

Some languages

- $L_{\mathcal{C D}}$: first-order language of categories + the 4 constants
- $L_{(\mathcal{D} ; \leq, A)}$: first-order language of posets $+A$
- L_{\rightarrow} : first-order language of digraphs
- L_{\rightarrow}^{2} : full second-order language of digraphs

Observation: $L_{\mathcal{C D}^{\prime}}$ can capture isomorphism and embeddability of digraphs.
A morphism $f \in C D(A, B)$ is

- injective iff: $\forall X \in O^{\mathcal{C D}} \forall g, h \in C D(X, A): g f=h f \Leftrightarrow g=h$,
- surjective iff: $\forall X \in O^{\mathcal{C D}} \forall g, h \in C D(B, X): f g=f h \Leftrightarrow g=h$.

This means all (n -ary) relations first-order definable in ($\mathcal{D} ; \leq$) are first-order definable in $\mathcal{C D}^{\prime}$ as well. We denote this fact by $\operatorname{Def}[(\mathcal{D} ; \leq)] \subseteq \operatorname{Def}\left[\mathcal{C D}^{\prime}\right]$. It is easy to show that $\operatorname{Def}[(\mathcal{D} ; \leq, A)] \subseteq \operatorname{Def}\left[\mathcal{C D}^{\prime}\right]$ holds as well.

$\operatorname{Def}\left[L_{\rightarrow}\right] \subseteq \operatorname{Def}\left[\mathcal{C D}^{\prime}\right]$

Within $(\mathcal{D} ; \leq, A)$ the "inner structure" of the digraphs is unavailable by first order formulas.

$\operatorname{Def}\left[L_{-}\right] \subseteq \operatorname{Def}\left[\mathcal{C D}^{\prime}\right]$

Within $(\mathcal{D} ; \leq, A)$ the "inner structure" of the digraphs is unavailable by first order formulas. Surprisingly, in $\mathcal{C D}^{\prime}$ we can capture the inner structure of digraphs, meaning $\operatorname{Def}\left[L_{\rightarrow}\right] \subseteq \operatorname{Def}\left[\mathcal{C D}^{\prime}\right]$.

$\operatorname{Def}\left[L_{\rightarrow}\right] \subseteq \operatorname{Def}\left[\mathcal{C D}^{\prime}\right]$

Within $(\mathcal{D} ; \leq, A)$ the "inner structure" of the digraphs is unavailable by first order formulas. Surprisingly, in $\mathcal{C D}^{\prime}$ we can capture the inner structure of digraphs, meaning $\operatorname{Def}\left[L_{\rightarrow}\right] \subseteq \operatorname{Def}\left[\mathcal{C D}^{\prime}\right]$.

For any $G \in O^{\mathcal{C D}}$,

G

$\operatorname{Def}\left[L_{\rightarrow}\right] \subseteq \operatorname{Def}\left[\mathcal{C D}^{\prime}\right]$

Within $(\mathcal{D} ; \leq, A)$ the "inner structure" of the digraphs is unavailable by first order formulas. Surprisingly, in $\mathcal{C D}^{\prime}$ we can capture the inner structure of digraphs, meaning $\operatorname{Def}\left[L_{\rightarrow}\right] \subseteq \operatorname{Def}\left[\mathcal{C D}^{\prime}\right]$.

For any $G \in O^{\mathcal{C D}}, C D\left(\mathbf{E}_{1}, G\right)$ is naturally bijective with G.

G

$\operatorname{Def}\left[L_{\rightarrow}\right] \subseteq \operatorname{Def}\left[\mathcal{C D}^{\prime}\right]$

Within $(\mathcal{D} ; \leq, A)$ the "inner structure" of the digraphs is unavailable by first order formulas. Surprisingly, in $\mathcal{C D}^{\prime}$ we can capture the inner structure of digraphs, meaning $\operatorname{Def}\left[L_{\rightarrow}\right] \subseteq \operatorname{Def}\left[\mathcal{C D}^{\prime}\right]$.

For any $G \in O^{\mathcal{C D}}, C D\left(\mathbf{E}_{1}, G\right)$ is naturally bijective with G. Let

$$
f=\left(\mathbf{E}_{1},\{1 \mapsto x\}, G\right), \quad g=\left(\mathbf{E}_{1},\{1 \mapsto y\}, G\right) \quad(x, y \in V(G))
$$

$\operatorname{Def}\left[L_{-}\right] \subseteq \operatorname{Def}\left[\mathcal{C D}^{\prime}\right]$

Within $(\mathcal{D} ; \leq, A)$ the "inner structure" of the digraphs is unavailable by first order formulas. Surprisingly, in $\mathcal{C D}^{\prime}$ we can capture the inner structure of digraphs, meaning $\operatorname{Def}\left[L_{\rightarrow}\right] \subseteq \operatorname{Def}\left[\mathcal{C D}^{\prime}\right]$.

For any $G \in O^{\mathcal{C D}}, C D\left(\mathbf{E}_{1}, G\right)$ is naturally bijective with G. Let

$$
f=\left(\mathbf{E}_{1},\{1 \mapsto x\}, G\right), \quad g=\left(\mathbf{E}_{1},\{1 \mapsto y\}, G\right) \quad(x, y \in V(G))
$$

$(x, y) \in E(G)$ holds iff

$\operatorname{Def}\left[L_{-}\right] \subseteq \operatorname{Def}\left[\mathcal{C D}^{\prime}\right]$

Within $(\mathcal{D} ; \leq, A)$ the "inner structure" of the digraphs is unavailable by first order formulas. Surprisingly, in $\mathcal{C D}^{\prime}$ we can capture the inner structure of digraphs, meaning $\operatorname{Def}\left[L_{\rightarrow}\right] \subseteq \operatorname{Def}\left[\mathcal{C D}^{\prime}\right]$.

For any $G \in O^{\mathcal{C D}}, C D\left(\mathbf{E}_{1}, G\right)$ is naturally bijective with G. Let

$$
f=\left(\mathbf{E}_{1},\{1 \mapsto x\}, G\right), \quad g=\left(\mathbf{E}_{1},\{1 \mapsto y\}, G\right) \quad(x, y \in V(G))
$$

$(x, y) \in E(G)$ holds iff

$\operatorname{Def}\left[L_{-}\right] \subseteq \operatorname{Def}\left[\mathcal{C D}^{\prime}\right]$

Within $(\mathcal{D} ; \leq, A)$ the "inner structure" of the digraphs is unavailable by first order formulas. Surprisingly, in $\mathcal{C D}^{\prime}$ we can capture the inner structure of digraphs, meaning $\operatorname{Def}\left[L_{\rightarrow}\right] \subseteq \operatorname{Def}\left[\mathcal{C D}^{\prime}\right]$.

For any $G \in O^{\mathcal{C D}}, C D\left(\mathbf{E}_{1}, G\right)$ is naturally bijective with G. Let

$$
f=\left(\mathbf{E}_{1},\{1 \mapsto x\}, G\right), \quad g=\left(\mathbf{E}_{1},\{1 \mapsto y\}, G\right) \quad(x, y \in V(G))
$$

$(x, y) \in E(G)$ holds iff

$\operatorname{Def}\left[L_{-}\right] \subseteq \operatorname{Def}\left[\mathcal{C D}^{\prime}\right]$

Within $(\mathcal{D} ; \leq, A)$ the "inner structure" of the digraphs is unavailable by first order formulas. Surprisingly, in $\mathcal{C D}^{\prime}$ we can capture the inner structure of digraphs, meaning $\operatorname{Def}\left[L_{\rightarrow}\right] \subseteq \operatorname{Def}\left[\mathcal{C D}^{\prime}\right]$.

For any $G \in O^{\mathcal{C D}}, C D\left(\mathbf{E}_{1}, G\right)$ is naturally bijective with G. Let

$$
f=\left(\mathbf{E}_{1},\{1 \mapsto x\}, G\right), \quad g=\left(\mathbf{E}_{1},\{1 \mapsto y\}, G\right) \quad(x, y \in V(G))
$$

$(x, y) \in E(G)$ holds iff

$$
\exists h \in C D\left(\mathbf{I}_{2}, G\right): \mathbf{f}_{1} h=f, \mathbf{f}_{2} h=g
$$

$\operatorname{Def}\left[L^{2}\right] \subseteq \operatorname{Def}\left[\mathcal{C D} D^{\prime}\right]$

$\operatorname{Def}\left[L^{2}\right] \subseteq \operatorname{Def}\left[\mathcal{C D} D^{\prime}\right]$

Example.

$\operatorname{Def}\left[L_{\rightarrow}^{2}\right] \subseteq \operatorname{Def}\left[\mathcal{C D} \mathcal{D}^{\prime}\right]$

Example. Let B and C the digraphs shown below.

$\operatorname{Def}\left[L_{-}^{2}\right] \subseteq \operatorname{Def}\left[\mathcal{C D}^{\prime}\right]$

Example. Let B and C the digraphs shown below. Let us consider the following (heterogeneous) relation:

$$
R=\left\{\left(b_{1}, c_{2}\right),\left(b_{2}, c_{3}\right),\left(b_{1}, c_{1}\right)\right\} \subseteq B \times C
$$

$\operatorname{Def}\left[L_{-}^{2}\right] \subseteq \operatorname{Def}\left[\mathcal{C D}^{\prime}\right]$

Example. Let B and C the digraphs shown below. Let us consider the following (heterogeneous) relation:

$$
R=\left\{\left(b_{1}, c_{2}\right),\left(b_{2}, c_{3}\right),\left(b_{1}, c_{1}\right)\right\} \subseteq B \times C
$$

We repsesent R in the following way:

$$
E_{3}
$$

$\operatorname{Def}\left[L^{2}{ }_{-}\right] \subseteq \operatorname{Def}\left[C \mathcal{D}^{\prime}\right]$

Example. Let B and C the digraphs shown below. Let us consider the following (heterogeneous) relation:

$$
R=\left\{\left(b_{1}, c_{2}\right),\left(b_{2}, c_{3}\right),\left(b_{1}, c_{1}\right)\right\} \subseteq B \times C
$$

We repsesent R in the following way:

$\operatorname{Def}\left[L_{-}^{2}\right] \subseteq \operatorname{Def}\left[\mathcal{C D}^{\prime}\right]$

Example. Let B and C the digraphs shown below. Let us consider the following (heterogeneous) relation:

$$
R=\left\{\left(b_{1}, c_{2}\right),\left(b_{2}, c_{3}\right),\left(b_{1}, c_{1}\right)\right\} \subseteq B \times C
$$

We repsesent R in the following way:

$\operatorname{Def}\left[L_{-}^{2}\right] \subseteq \operatorname{Def}\left[\mathcal{C D}^{\prime}\right]$

Example. Let B and C the digraphs shown below. Let us consider the following (heterogeneous) relation:

$$
R=\left\{\left(b_{1}, c_{2}\right),\left(b_{2}, c_{3}\right),\left(b_{1}, c_{1}\right)\right\} \subseteq B \times C
$$

We repsesent R in the following way:

$\operatorname{Def}\left[L_{-}^{2}\right] \subseteq \operatorname{Def}\left[\mathcal{C D}^{\prime}\right]$

Example. Let B and C the digraphs shown below. Let us consider the following (heterogeneous) relation:

$$
R=\left\{\left(b_{1}, c_{2}\right),\left(b_{2}, c_{3}\right),\left(b_{1}, c_{1}\right)\right\} \subseteq B \times C
$$

We repsesent R in the following way:

So R can be represented as $\left(E_{3}, p_{1}, p_{2}\right)$, where p_{1}, p_{2} are two morphisms.

$\operatorname{Def}\left[L_{-}^{2}\right] \subseteq \operatorname{Def}\left[\mathcal{C D}^{\prime}\right]$

Example. Let B and C the digraphs shown below. Let us consider the following (heterogeneous) relation:

$$
R=\left\{\left(b_{1}, c_{2}\right),\left(b_{2}, c_{3}\right),\left(b_{1}, c_{1}\right)\right\} \subseteq B \times C
$$

We repsesent R in the following way:

So R can be represented as $\left(E_{3}, p_{1}, p_{2}\right)$, where p_{1}, p_{2} are two morphisms.

$\operatorname{Def}\left[L_{-}^{2}\right] \subseteq \operatorname{Def}\left[\mathcal{C D}^{\prime}\right]$

Example. Let B and C the digraphs shown below. Let us consider the following (heterogeneous) relation:

$$
R=\left\{\left(b_{1}, c_{2}\right),\left(b_{2}, c_{3}\right),\left(b_{1}, c_{1}\right)\right\} \subseteq B \times C
$$

We repsesent R in the following way:

So R can be represented as $\left(E_{3}, p_{1}, p_{2}\right)$, where p_{1}, p_{2} are two morphisms.

Final results

We've seen:

- $\operatorname{Def}[(\mathcal{D} ; \leq, A)] \subseteq \operatorname{Def}\left[\mathcal{C D}^{\prime}\right]$
- $\operatorname{Def}\left[L_{\rightarrow}\right] \subseteq \operatorname{Def}\left[\mathcal{C D} \mathcal{D}^{\prime}\right]$
- $\operatorname{Def}\left[L_{\rightarrow}^{2}\right] \subseteq \operatorname{Def}\left[\mathcal{C D} \mathcal{D}^{\prime}\right]$

Final results

We've seen:

- $\operatorname{Def}[(\mathcal{D} ; \leq, A)] \subseteq \operatorname{Def}\left[\mathcal{C D}^{\prime}\right]$
- $\operatorname{Def}\left[L_{\rightarrow}\right] \subseteq \operatorname{Def}\left[\mathcal{C D}^{\prime}\right]$
- $\operatorname{Def}\left[L_{\rightarrow}^{2}\right] \subseteq \operatorname{Def}\left[\mathcal{C D}^{\prime}\right]$
$L_{\mathcal{C D}^{\prime}}$ seems to be the strongest by far...

Final results

We've seen:

- $\operatorname{Def}[(\mathcal{D} ; \leq, A)] \subseteq \operatorname{Def}\left[\mathcal{C D}^{\prime}\right]$
- $\operatorname{Def}\left[L_{\rightarrow}\right] \subseteq \operatorname{Def}\left[\mathcal{C D}^{\prime}\right]$
- $\operatorname{Def}\left[L^{2} \rightarrow\right] \subseteq \operatorname{Def}\left[\mathcal{C D}^{\prime}\right]$
$L_{\mathcal{C D}^{\prime}}$ seems to be the strongest by far...

Example

The set of connected and weakly connected digraphs are both first-order definable in ($\mathcal{D} ; \leq, A$).

Final results

We've seen:

- $\operatorname{Def}[(\mathcal{D} ; \leq, A)] \subseteq \operatorname{Def}\left[\mathcal{C D}^{\prime}\right]$
- $\operatorname{Def}\left[L_{\rightarrow}\right] \subseteq \operatorname{Def}\left[\mathcal{C D}^{\prime}\right]$
- $\operatorname{Def}\left[L_{\rightarrow}^{2}\right] \subseteq \operatorname{Def}\left[\mathcal{C D}^{\prime}\right]$
$L_{\mathcal{C D}^{\prime}}$ seems to be the strongest by far...

Example

The set of connected and weakly connected digraphs are both first-order definable in ($\mathcal{D} ; \leq, A$).

Theorem $\left(\operatorname{Def}[(\mathcal{D} ; \leq, A)] \supseteq \operatorname{Def}\left[\mathcal{C D}^{\prime}\right]\right)$

Every isomorphism-invariant relation that is first-order definable in $\mathcal{C D}^{\prime}$ is first-order definable in ($\mathcal{D} ; \leq, A$) (after factoring by isomorphism).

Thank you for your attention!

