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Clones that normal people have in mind
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Clones that we choose to spend time with
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Intro to our clones

Operation: An → A function (n-ary operation).

ith projection: πi (x1, . . . , xi , . . . xn) = xi .

Composition: substitute m-ary operations g1, . . . , gn into an n-ary
operation f to get a new m-ary operation f (g1, . . . , gn).

Definition
Clone:

a set of operations on a set A,
contains all projections,
closed under compositions.

Examples: all operations on a set, all projections, ...
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Clones on a two element set
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Clones on a three element set

?
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Maximal clones

Maximal clones: lower cowers of the clone of all operations.

In 1966, I. G. Rosenberg classified the maximal clones (over finite sets) into
six classes.

It has been shown that the clones of five of these classes are finitely
generated. (Generating means adding all the projections and taking all
possible compositions.)

The sixth class contains the clones of monotone operations of bounded
posets. The clones of bounded posets up to 7 elements are finitely
generated.

The first problematic bounded poset has turned out to be:
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Nonfinitely generated maximal clones found

In 1986, G. Tardos published an ingenious paper showing that the clone of
the poset above is NOT finitely generated. This was the first maximal
clone to be shown nonfinitely generated.
In 1993, L. Zádori gave a full description of series-paralell posets that have
non-finitely generated clones.
No one has found nonfinitely generated maximal clones since, though one
may conjecture that there are a lot of them.
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Main objective, difficulties and our approach

Goal: find new examples of (bounded) posets with non-finitely generated clones!

Tardos’s original proof heavily relies on a lemma in which he describes the
so-called obstacles of his poset. PROBLEM: obstacles are very difficult to
describe for other posets.

The crown posets—C4, C6, and C8:

The obstacles of crowns get complicated, there is no description of them so far.
We try to replace obstacles with something we can handle more: critical relations.
We described the critical relations of the crowns.
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Invariant relations of posets

Let P be a finite poset.

α ⊆ Pn is called invariant if for any monotone m-ary operation f and
x1, . . . , xm ∈ α: f (x1, . . . , xm) ∈ α holds, where f (x1, . . . , xm) is taken
componentwise. Then we say f preserves α.

Proposition
Let P be an arbitrary finite poset and α ⊆ Pn. Then α is invariant if and
only if there exists a finite poset Q and (x1, . . . , xn) ∈ Qn for which

α = {(f (x1), f (x2), . . . , f (xn)) | f : Q → P monotone}.

Example. It is easy to see that the relation {(x , y) : ∃z such that z ≤ x , y}
is invariant for every poset.
How does the proposition work here?
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Critical relations, obstacles and their connection

Definition
Critical relations are invariant relations that are not (non-trivial) direct
products and not (non-trivial) intersections of invariant relations.

For every critical relation α there exists a minimal Q (and
(x1, . . . , xn) ∈ Qn) defining α. From minimality, we get a tuple
y = (y1, . . . , yn) ∈ Pn \ α for which the partial map f : Q → P, xi 7→ yi is
not extendible monotonically but for every Q ′ properly contained in Q, f |Q′

is extendible.

An obstacle for P is a pair (Q, f ), where Q is a poset and f is a partial
map that is not extendible but for all Q ′ properly contained in Q, f |Q′ is.

We see that there is a connection between critical relations and obstacles:
to every critical relation we can assign an obstacle.
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Critical relations, obstacles and their connection

Tardos used the obstacles for deciding if partial functions Q → T are
extendible monotonically or not.

Proposition
A partial function Q → P is extendible monotonically if and only if it
contains no obstacle.

In comparison:

Critical relations are used for deciding if partial functions Pn → P are
extendible or not.

Proposition
A partial function Pn → P is extendible monotonically if and only if it
preserves all critical relations.
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Critical relations of crowns

A tuple a = (a1, . . . , an) is called large if there is no (k + 1)-element
subfence of C2k that contains {a1, . . . , an}.

Let

R(a1,...,an) = Cn
2k \ {(σ(a1), . . . , σ(an)) : σ ∈ AutC2k}

Theorem
The critical relations of C2k are:

the unary ∅ relation,
the binary critical relations: we can get them with our proposition s. t.
Q is a “small” fence and (x , y) ∈ Q is the pair of the endpoints
the n-ary critical relations, n ≥ 2: for all large range tuples a ∈ Cn

2k ,
the relations Ra.
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A tuple a = (a1, . . . , an) is called large if there is no (k + 1)-element
subfence of C2k that contains {a1, . . . , an}. Let

R(a1,...,an) = Cn
2k \ {(σ(a1), . . . , σ(an)) : σ ∈ AutC2k}

Theorem
The critical relations of C2k are:

the unary ∅ relation,
the binary critical relations: we can get them with our proposition s. t.
Q is a “small” fence and (x , y) ∈ Q is the pair of the endpoints
the n-ary critical relations, n ≥ 2: for all large range tuples a ∈ Cn
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Locked 6-crown: 1+ 2+ C6 + 2+ 1
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Something that came as a suprise

The reduced clone of a poset consists of those operations of its clone that
are greater or equal to some projections.

Observation
If the reduced idempotent clone of a bounded poset is finitely generated
then its clone is also finitely generated.

For an f (x1, x2, . . . , xn), let

fI (y1, y2, x1, x2, . . . , xn) :=


1, if y1 6= 0 and y2 = 1
f (x1, . . . , xn), if y1 = 0 and y2 = 1
y1, elsewhere

Can we generalise this observation for half-bounded posets?
We felt this might be possible...
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Something that came as a suprise

The clone and also the idempotent clone of the house poset

are non-finitely generated. Hence we expected that the reduced idempotent
clone of the house poset is also non-finitely generated.

Suprisingly, we proved

Theorem
The reduced idempotent clone of the house poset is finitely generated.

So our observation does not extend to half-bounded posets.
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Question

We know from Zádori’s paper that the clone of

is non-finitely generated.

We also know that its idempotent clone and reduced idempotent clone
coincide. QUESTION. Is this clone finitely generated?
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Thank you!
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