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First-order definability in posets

{1} = {x : (∀y)(x ≤ y)}

{60} = {x : (∀y)(y ≤ x)}

{2, 3, 5} =
= {x : 1 ≺ x}

{3, 5} = {x : 1 ≺ x , x has exactly two covers}

Proof: an automorphism: 1 7→ 1, 2 7→ 2, 4 7→ 4, 3 7→ 5, 5 7→ 3, 6 7→ 10,
10 7→ 6, 15 7→ 15, 30 7→ 30, 12 7→ 20, 20 7→ 12, 60 7→ 60.
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Directed graphs, substructure versus embeddability

D: isomorphism types of finite directed graphs, or shortly digraphs, i. e.
finite sets with a binary relation on them

Substructure, v
G v G ′ if and only if G is isomorphic to an induced substructure of G ′.

Embeddability, ≤
G ≤ G ′ if and only if there exists ϕ : G → G ′ injective graph
homomorphism, that is (u, v) ∈ E (G )⇒ (ϕ(u), ϕ(v)) ∈ E (G ′).

Examples

(D;v) and (D;≤) are completely different partial orders.
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EMBEDDABILITY: the bottom of the poset (D;≤)
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SUBSTRUCTURE: the bottom of the poset (D;v)
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First-order definability in substructure orderings

1 J. Ježek and R. McKenzie, Definability in substructure orderings, I:
finite semilattices. Algebra Universalis 61, 2009, 59-75.

2 J. Ježek and R. McKenzie, Definability in substructure orderings, II:
finite ordered sets. Order 27, 2010, 115-145.

3 J. Ježek and R. McKenzie, Definability in substructure orderings, III:
finite distributive lattices. Algebra Universalis 61, 2009, 283-300.

4 J. Ježek and R. McKenzie, Definability in substructure orderings, IV:
finite lattices. Algebra Universalis 61, 2009, 301-312.

Results:
1: Every semilattice is definable.
2: The set {P,Pd} is definable.
3: The set {D,Dd} is definable.
4: The set {L, Ld} is definable.
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Where I started

EMBEDDABILITY: (D;v)
Why?...

A:

Theorem (K, 2015)

In (D;≤), the set {G ,GT} is definable for arbitrary G ∈ D.

In (D;≤,A),
every G ∈ D is definable.

Corollary (K, 2015)

The poset (D;≤) has only one nontrivial automorphism, namely G 7→ GT .
Therefore it’s automorphism group is isomorphic to Z2.
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Can we go further?

We already know that a finite set H ⊆ D is first-order definable in (D;≤) if
and only if ∀G ∈ D : G ∈ H ⇔ GT ∈ H.

This settles the definability of finite subsets.

Can we say anything about the definability of infinite subsets at this
point? Not really...

For example, is the set of weakly connected digraphs first-order definable in
(D;≤)?
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First- and second-order languages of digraphs

Even the first-order language of digraphs is stronger than what we have so
far.

However a basic model-theoretic argument shows that the set of
weakly connected digraphs are NOT definable in this language.

The (full) second-order language of digraphs is much stronger: you can
quantify over relations (of arbitrary arity), too. Weakly connectedness is an
easily definable property here.

Theorem (K, 2018+)
The first-order language of (D;≤,A) can express the second-order
language of directed graphs.
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A small category

CD: a small category with:
objects= OCD: digraphs with vertices {1, . . . , n}

morphisms: A,B ∈ OCD:
hom(A,B) = {(A, α,B) : α : A→ B homomorphism}
idA ∈ hom(A,A)

f = (A, α,B), g = (B, β,C ): fg = (A, β ◦ α,C )

Four constants:
E1 ∈ OCD : V (E1) = {1}, E (E1) = ∅,
I2 ∈ OCD : V (I2) = {1, 2}, E (E1) = {(1, 2)},
f1 ∈ hom(E1, I2) : f1 = (E1, {1 7→ 1}, I2),
f2 ∈ hom(E1, I2) : f2 = (E1, {1 7→ 2}, I2).

CD′ = CD + these four constants
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The language LCD′

LCD′ : first-order language of categories + the 4 constants

LCD′ can capture isomorphism and embeddability of digraphs.

A morphism f ∈ CD(A,B) is
injective iff: ∀X ∈ OCD ∀g , h ∈ hom(X ,A) : gf = hf ⇔ g = h,
surjective iff: ∀X ∈ OCD ∀g , h ∈ hom(B,X ) : fg = fh⇔ g = h.

This means all (n-ary) relations first-order definable in (D;≤) are
first-order definable in CD′ as well.
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LCD′ is strong

Within (D;≤,A) the “inner structure” of the digraphs is unavailable by first
order formulas.

Surprisingly, in CD′ we can capture the inner structure of
digraphs, meaning the first-order language of digraphs can be expressed.

For any G ∈ OCD, hom(E1,G ) is naturally bijective with G . Let

f = (E1, {1 7→ x},G ), g = (E1, {1 7→ y},G ) (x , y ∈ V (G )).

(x , y) ∈ E (G ) holds iff

∃h ∈ hom(I2,G ) : f1h = f , f2h = g .

E1

I2
G

x

y

g

f

h

h

f2

f1
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LCD′ is even stronger

Example. Let B and C the digraphs shown below. Let us consider the
following (heterogeneous) relation:

R = {, , } ⊆ B × C .

We repsesent R in the following way:

B C
b1 b2 c1 c2

c3

E3

So R can be represented as (E3, , ), where , are two morphisms.
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So R can be represented as (E3, p1, p2), where p1, p2 are two morphisms.
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A characterisation

We have already seen that (n-ary) relations first-order definable in (D;≤)
are first-order definable in CD′ as well.

The converse is nontrivial, but true:

Theorem (K, 2018+)
The first-order language of (D;≤,A) is “as strong as” LCD′ .

So far we have roughly discussed:
1 Á. Kunos, Definability in the embeddability ordering of finite directed

graphs. Order 32/1, 2015, 117-133.
2 Á. Kunos, Definability in the embeddability ordering of finite directed

graphs, II., submitted to Order
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The substructure ordering: (D;v)

A completely new partial order.

Even the automorhphism groups differ.

I conjectured Z2
2, induced by taking transposition and complement of

digraphs, but I found the “loop-exchange automorphism” as well.
Is the automorphism group isomorphic to Z3

2?

Two approaches:
build from scratch again
try to use the existing result(s)
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Board time
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Thank you for your attention!
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