Definability in substructure and embeddability orderings

Ádám Kunos

Algebra Seminar, Bolyai Institute

Szeged, May 30, 2018

Supported by the UNKP-17-3 New National Excellence Program of the Ministry of Human Capacities.

First-order definability in posets

First-order definability in posets

\{1\}

First-order definability in posets

$$
\{1\}=\{x:(\forall y)(x \leq y)\}
$$

First-order definability in posets

$$
\begin{aligned}
& \{1\}=\{x:(\forall y)(x \leq y)\} \\
& \{60\}=\{x:(\forall y)(y \leq x)\}
\end{aligned}
$$

First-order definability in posets

$\{1\}=\{x:(\forall y)(x \leq y)\}$
$\{60\}=\{x:(\forall y)(y \leq x)\}$
$\{2,3,5\}=$

First-order definability in posets

$\{1\}=\{x:(\forall y)(x \leq y)\}$
$\{60\}=\{x:(\forall y)(y \leq x)\}$
$\{2,3,5\}=\{$ the covers of 1$\}$

First-order definability in posets

$$
\begin{aligned}
& \{1\}=\{x:(\forall y)(x \leq y)\} \\
& \{60\}=\{x:(\forall y)(y \leq x)\} \\
& \{2,3,5\}=\{\text { the covers of } 1\}
\end{aligned}
$$

$\prec=\{(x, y): x \leq y \wedge x \neq y \wedge(\forall z)(x \leq z \leq y \Rightarrow z=x \vee z=y)\}$

First-order definability in posets

$$
\left.\begin{array}{l}
\{1\}=\{x:(\forall y)(x \leq y)\} \\
\{60\}=\{x:(\forall y)(y \leq x)\} \\
\{2,3,5\}=\{\text { the covers of } 1\} \\
\quad=\{x: 1 \prec x\}
\end{array}\right\} \begin{aligned}
& \prec=\{(x, y): x \leq y \wedge x \neq y \wedge(\forall z)(x \leq z \leq y \Rightarrow z=x \vee z=y)\}
\end{aligned}
$$

First-order definability in posets

$$
\{1\}=\{x:(\forall y)(x \leq y)\}
$$

$$
\{60\}=\{x:(\forall y)(y \leq x)\}
$$

$\{2,3,5\}=\{$ the covers of 1$\}$

$$
=\{x: 1 \prec x\}
$$

$\prec=\{(x, y): x \leq y \wedge x \neq y \wedge(\forall z)(x \leq z \leq y \Rightarrow z=x \vee z=y)\}$
$\{3,5\}$

First-order definability in posets

$\{1\}=\{x:(\forall y)(x \leq y)\}$
$\{60\}=\{x:(\forall y)(y \leq x)\}$
$\{2,3,5\}=\{$ the covers of 1$\}$

$$
=\{x: 1 \prec x\}
$$

$\prec=\{(x, y): x \leq y \wedge x \neq y \wedge(\forall z)(x \leq z \leq y \Rightarrow z=x \vee z=y)\}$
$\{3,5\}=\{x: 1 \prec x, x$ has exactly two covers $\}$

First-order definability in posets

$$
\begin{aligned}
& \{1\}=\{x:(\forall y)(x \leq y)\} \\
& \{60\}=\{x:(\forall y)(y \leq x)\} \\
& \{2,3,5\}=\{\text { the covers of } 1\} \\
& \quad=\{x: 1 \prec x\} \\
& \prec=\{(x, y): x \leq y \wedge x \neq y \wedge(\forall z)(x \leq z \leq y \Rightarrow z=x \vee z=y)\} \\
& \{3,5\}=\{x: 1 \prec x, x \text { has exactly two covers }\} \\
& \{3\}=\{x: ? ? ?\}
\end{aligned}
$$

First-order definability in posets

$$
\begin{aligned}
& \{1\}=\{x:(\forall y)(x \leq y)\} \\
& \{60\}=\{x:(\forall y)(y \leq x)\} \\
& \{2,3,5\}=\{\text { the covers of } 1\} \\
& \quad=\{x: 1 \prec x\} \\
& \prec=\{(x, y): x \leq y \wedge x \neq y \wedge(\forall z)(x \leq z \leq y \Rightarrow z=x \vee z=y)\} \\
& \{3,5\}=\{x: 1 \prec x, x \text { has exactly two covers }\} \\
& \{3\}=\{x: ? ? ?\} \text { Conjecture: NO suitable formula }
\end{aligned}
$$

First-order definability in posets

$$
\begin{aligned}
& \{1\}=\{x:(\forall y)(x \leq y)\} \\
& \{60\}=\{x:(\forall y)(y \leq x)\} \\
& \{2,3,5\}=\{\text { the covers of } 1\} \\
& =\{x: 1 \prec x\}
\end{aligned}
$$

$\prec=\{(x, y): x \leq y \wedge x \neq y \wedge(\forall z)(x \leq z \leq y \Rightarrow z=x \vee z=y)\}$
$\{3,5\}=\{x: 1 \prec x, x$ has exactly two covers $\}$
$\{3\}=\{x$: ???\} Conjecture: NO suitable formula
Proof: an automorphism: $1 \mapsto 1,2 \mapsto 2,4 \mapsto 4,3 \mapsto 5,5 \mapsto 3,6 \mapsto 10$, $10 \mapsto 6,15 \mapsto 15,30 \mapsto 30,12 \mapsto 20,20 \mapsto 12,60 \mapsto 60$.

Directed graphs, substructure versus embeddability

\mathcal{D} : isomorphism types of finite directed graphs, or shortly digraphs, i. e. finite sets with a binary relation on them

Directed graphs, substructure versus embeddability

\mathcal{D} : isomorphism types of finite directed graphs, or shortly digraphs, i. e. finite sets with a binary relation on them

Substructure, \sqsubseteq
$G \sqsubseteq G^{\prime}$ if and only if G is isomorphic to an induced substructure of G^{\prime}.

Directed graphs, substructure versus embeddability

\mathcal{D} : isomorphism types of finite directed graphs, or shortly digraphs, i. e. finite sets with a binary relation on them

Substructure, \sqsubseteq
$G \sqsubseteq G^{\prime}$ if and only if G is isomorphic to an induced substructure of G^{\prime}.

Embeddability, \leq

$G \leq G^{\prime}$ if and only if there exists $\varphi: G \rightarrow G^{\prime}$ injective graph homomorphism,

Directed graphs, substructure versus embeddability

\mathcal{D} : isomorphism types of finite directed graphs, or shortly digraphs, i. e. finite sets with a binary relation on them

Substructure, \sqsubseteq
$G \sqsubseteq G^{\prime}$ if and only if G is isomorphic to an induced substructure of G^{\prime}.

Embeddability, \leq

$G \leq G^{\prime}$ if and only if there exists $\varphi: G \rightarrow G^{\prime}$ injective graph homomorphism, that is $(u, v) \in E(G) \Rightarrow(\varphi(u), \varphi(v)) \in E\left(G^{\prime}\right)$.

Directed graphs, substructure versus embeddability

\mathcal{D} : isomorphism types of finite directed graphs, or shortly digraphs, i. e. finite sets with a binary relation on them

Substructure, \sqsubseteq
$G \sqsubseteq G^{\prime}$ if and only if G is isomorphic to an induced substructure of G^{\prime}.

Embeddability, \leq

$G \leq G^{\prime}$ if and only if there exists $\varphi: G \rightarrow G^{\prime}$ injective graph homomorphism, that is $(u, v) \in E(G) \Rightarrow(\varphi(u), \varphi(v)) \in E\left(G^{\prime}\right)$.

Examples

Directed graphs, substructure versus embeddability

\mathcal{D} : isomorphism types of finite directed graphs, or shortly digraphs, i. e. finite sets with a binary relation on them

Substructure, \sqsubseteq
$G \sqsubseteq G^{\prime}$ if and only if G is isomorphic to an induced substructure of G^{\prime}.

Embeddability, \leq

$G \leq G^{\prime}$ if and only if there exists $\varphi: G \rightarrow G^{\prime}$ injective graph homomorphism, that is $(u, v) \in E(G) \Rightarrow(\varphi(u), \varphi(v)) \in E\left(G^{\prime}\right)$.

Examples
$(\mathcal{D} ; \sqsubseteq)$ and $(\mathcal{D} ; \leq)$ are completely different partial orders.

EMBEDDABILITY: the bottom of the poset ($\mathcal{D} ; \leq$)

SUBSTRUCTURE: the bottom of the poset ($\mathcal{D} ; \sqsubset$)

First-order definability in substructure orderings

(1) J. Ježek and R. McKenzie, Definability in substructure orderings, I: finite semilattices. Algebra Universalis 61, 2009, 59-75.
(2) J. Ježek and R. McKenzie, Definability in substructure orderings, II: finite ordered sets. Order 27, 2010, 115-145.
(3) J. Ježek and R. McKenzie, Definability in substructure orderings, III: finite distributive lattices. Algebra Universalis 61, 2009, 283-300.
(9) J. Ježek and R. McKenzie, Definability in substructure orderings, IV: finite lattices. Algebra Universalis 61, 2009, 301-312.

Results:
1: Every semilattice is definable.
2: The set $\left\{P, P^{d}\right\}$ is definable.
3: The set $\left\{D, D^{d}\right\}$ is definable.
4: The set $\left\{L, L^{d}\right\}$ is definable.

Where I started

EMBEDDABILITY: $(\mathcal{D} ; \sqsubseteq)$ Why?...

Where I started

EMBEDDABILITY: $(\mathcal{D} ; \sqsubseteq)$
Why?...

Theorem (K, 2015)

$\ln (\mathcal{D} ; \leq)$, the set $\left\{G, G^{T}\right\}$ is definable for arbitrary $G \in \mathcal{D}$.

Where I started

EMBEDDABILITY: $(\mathcal{D} ; \sqsubseteq)$
Why?...

Theorem (K, 2015)

$\ln (\mathcal{D} ; \leq)$, the set $\left\{G, G^{T}\right\}$ is definable for arbitrary $G \in \mathcal{D}$.

Where I started

EMBEDDABILITY: $(\mathcal{D} ; \sqsubseteq)$
Why?...

Theorem (K, 2015)

$\ln (\mathcal{D} ; \leq)$, the set $\left\{G, G^{\top}\right\}$ is definable for arbitrary $G \in \mathcal{D} . \ln (\mathcal{D} ; \leq, A)$, every $G \in \mathcal{D}$ is definable.

Where I started

EMBEDDABILITY: $(\mathcal{D} ; \sqsubseteq)$
Why?...

Theorem (K, 2015)

In $(\mathcal{D} ; \leq)$, the set $\left\{G, G^{T}\right\}$ is definable for arbitrary $G \in \mathcal{D} . \ln (\mathcal{D} ; \leq, A)$, every $G \in \mathcal{D}$ is definable.

Corollary (K, 2015)

The poset ($\mathcal{D} ; \leq$) has only one nontrivial automorphism, namely $G \mapsto G^{T}$. Therefore it's automorphism group is isomorphic to \mathbb{Z}_{2}.

Can we go further?

We already know that a finite set $H \subseteq \mathcal{D}$ is first-order definable in $(\mathcal{D} ; \leq)$ if and only if $\forall G \in \mathcal{D}: G \in H \Leftrightarrow G^{T} \in H$.

Can we go further?

We already know that a finite set $H \subseteq \mathcal{D}$ is first-order definable in $(\mathcal{D} ; \leq)$ if and only if $\forall G \in \mathcal{D}: G \in H \Leftrightarrow G^{T} \in H$.
This settles the definability of finite subsets.

Can we go further?

We already know that a finite set $H \subseteq \mathcal{D}$ is first-order definable in $(\mathcal{D} ; \leq)$ if and only if $\forall G \in \mathcal{D}: G \in H \Leftrightarrow G^{T} \in H$.
This settles the definability of finite subsets.

Can we say anything about the definability of infinite subsets at this point?

Can we go further?

We already know that a finite set $H \subseteq \mathcal{D}$ is first-order definable in $(\mathcal{D} ; \leq)$ if and only if $\forall G \in \mathcal{D}: G \in H \Leftrightarrow G^{T} \in H$.
This settles the definability of finite subsets.

Can we say anything about the definability of infinite subsets at this point? Not really...

Can we go further?

We already know that a finite set $H \subseteq \mathcal{D}$ is first-order definable in ($\mathcal{D} ; \leq$) if and only if $\forall G \in \mathcal{D}: G \in H \Leftrightarrow G^{T} \in H$.
This settles the definability of finite subsets.

Can we say anything about the definability of infinite subsets at this point? Not really...

For example, is the set of weakly connected digraphs first-order definable in $(\mathcal{D} ; \leq)$?

First- and second-order languages of digraphs

Even the first-order language of digraphs is stronger than what we have so far.

First- and second-order languages of digraphs

Even the first-order language of digraphs is stronger than what we have so far. However a basic model-theoretic argument shows that the set of weakly connected digraphs are NOT definable in this language.

First- and second-order languages of digraphs

Even the first-order language of digraphs is stronger than what we have so far. However a basic model-theoretic argument shows that the set of weakly connected digraphs are NOT definable in this language.

The (full) second-order language of digraphs is much stronger: you can quantify over relations (of arbitrary arity), too.

First- and second-order languages of digraphs

Even the first-order language of digraphs is stronger than what we have so far. However a basic model-theoretic argument shows that the set of weakly connected digraphs are NOT definable in this language.

The (full) second-order language of digraphs is much stronger: you can quantify over relations (of arbitrary arity), too. Weakly connectedness is an easily definable property here.

First- and second-order languages of digraphs

Even the first-order language of digraphs is stronger than what we have so far. However a basic model-theoretic argument shows that the set of weakly connected digraphs are NOT definable in this language.

The (full) second-order language of digraphs is much stronger: you can quantify over relations (of arbitrary arity), too. Weakly connectedness is an easily definable property here.

Theorem (K, 2018+)

The first-order language of $(\mathcal{D} ; \leq, A)$ can express the second-order language of directed graphs.

A small category

$\mathcal{C D}$: a small category with:

- objects $=O^{\text {CD }}:$ digraphs with vertices $\{1, \ldots, n\}$

A small category

$\mathcal{C D}$: a small category with:

- objects $=O^{\mathcal{C D}}$: digraphs with vertices $\{1, \ldots, n\}$
- morphisms: $A, B \in O^{\mathcal{C D}}$: hom $(A, B)=\{(A, \alpha, B): \alpha: A \rightarrow B$ homomorphism $\}$

A small category

$\mathcal{C D}$: a small category with:

- objects $=O^{\mathcal{C D}}$: digraphs with vertices $\{1, \ldots, n\}$
- morphisms: $A, B \in O^{\mathcal{C D}}$:
hom $(A, B)=\{(A, \alpha, B): \alpha: A \rightarrow B$ homomorphism $\}$
- $\operatorname{id}_{A} \in \operatorname{hom}(A, A)$

A small category

$\mathcal{C D}$: a small category with:

- objects $=O^{\mathcal{C D}}$: digraphs with vertices $\{1, \ldots, n\}$
- morphisms: $A, B \in O^{\mathcal{C D}}$:
hom $(A, B)=\{(A, \alpha, B): \alpha: A \rightarrow B$ homomorphism $\}$
- $\operatorname{id}_{A} \in \operatorname{hom}(A, A)$
- $f=(A, \alpha, B), g=(B, \beta, C): f g=(A, \beta \circ \alpha, C)$

A small category

$\mathcal{C D}$: a small category with:

- objects $=O^{\mathcal{C D}}$: digraphs with vertices $\{1, \ldots, n\}$
- morphisms: $A, B \in O^{\mathcal{C D}}$:
hom $(A, B)=\{(A, \alpha, B): \alpha: A \rightarrow B$ homomorphism $\}$
- $\operatorname{id}_{A} \in \operatorname{hom}(A, A)$
- $f=(A, \alpha, B), g=(B, \beta, C): f g=(A, \beta \circ \alpha, C)$

Four constants:

- $\mathbf{E}_{1} \in O^{\mathcal{C D}}: V\left(\mathbf{E}_{1}\right)=\{1\}, E\left(\mathbf{E}_{1}\right)=\emptyset$,

A small category

$\mathcal{C D}$: a small category with:

- objects $=O^{\mathcal{C D}}$: digraphs with vertices $\{1, \ldots, n\}$
- morphisms: $A, B \in O^{\mathcal{C D}}$:
hom $(A, B)=\{(A, \alpha, B): \alpha: A \rightarrow B$ homomorphism $\}$
- $\operatorname{id}_{A} \in \operatorname{hom}(A, A)$
- $f=(A, \alpha, B), g=(B, \beta, C): f g=(A, \beta \circ \alpha, C)$

Four constants:

- $\mathbf{E}_{1} \in O^{\mathcal{C D}}: V\left(\mathbf{E}_{1}\right)=\{1\}, E\left(\mathbf{E}_{1}\right)=\emptyset$,
- $\mathbf{I}_{2} \in O^{\mathcal{C D}}: V\left(\mathbf{I}_{2}\right)=\{1,2\}, E\left(\mathbf{E}_{1}\right)=\{(1,2)\}$,

A small category

$\mathcal{C D}$: a small category with:

- objects $=O^{\mathcal{C D}}$: digraphs with vertices $\{1, \ldots, n\}$
- morphisms: $A, B \in O^{\mathcal{C D}}$:
hom $(A, B)=\{(A, \alpha, B): \alpha: A \rightarrow B$ homomorphism $\}$
- $\operatorname{id}_{A} \in \operatorname{hom}(A, A)$
- $f=(A, \alpha, B), g=(B, \beta, C): f g=(A, \beta \circ \alpha, C)$

Four constants:

- $\mathrm{E}_{1} \in O^{\mathcal{C D}}: V\left(\mathrm{E}_{1}\right)=\{1\}, E\left(\mathrm{E}_{1}\right)=\emptyset$,
- $\mathbf{I}_{2} \in O^{\mathcal{C D}}: V\left(\mathbf{I}_{2}\right)=\{1,2\}, E\left(\mathbf{E}_{1}\right)=\{(1,2)\}$,
- $\mathbf{f}_{1} \in \operatorname{hom}\left(E_{1}, \mathbf{I}_{2}\right): f_{1}=\left(E_{1},\{1 \mapsto 1\}, \mathbf{I}_{2}\right)$,

A small category

$\mathcal{C D}$: a small category with:

- objects $=O^{\mathcal{C D}}$: digraphs with vertices $\{1, \ldots, n\}$
- morphisms: $A, B \in O^{\mathcal{C D}}$: hom $(A, B)=\{(A, \alpha, B): \alpha: A \rightarrow B$ homomorphism $\}$
- $\operatorname{id}_{A} \in \operatorname{hom}(A, A)$
- $f=(A, \alpha, B), g=(B, \beta, C): f g=(A, \beta \circ \alpha, C)$

Four constants:

- $\mathrm{E}_{1} \in O^{\mathcal{C D}}: V\left(\mathrm{E}_{1}\right)=\{1\}, E\left(\mathrm{E}_{1}\right)=\emptyset$,
- $\mathbf{I}_{2} \in O^{\mathcal{C D}}: V\left(\mathbf{I}_{2}\right)=\{1,2\}, E\left(\mathbf{E}_{1}\right)=\{(1,2)\}$,
- $\mathbf{f}_{1} \in \operatorname{hom}\left(E_{1}, \mathbf{I}_{2}\right)$: $\mathbf{f}_{1}=\left(E_{1},\{1 \mapsto 1\}, \mathbf{I}_{2}\right)$,
- $\mathbf{f}_{2} \in \operatorname{hom}\left(E_{1}, \boldsymbol{I}_{2}\right): f_{2}=\left(E_{1},\{1 \mapsto 2\}, \mathbf{I}_{2}\right)$.

A small category

$\mathcal{C D}$: a small category with:

- objects $=O^{\mathcal{C D}}$: digraphs with vertices $\{1, \ldots, n\}$
- morphisms: $A, B \in O^{\mathcal{C D}}$: hom $(A, B)=\{(A, \alpha, B): \alpha: A \rightarrow B$ homomorphism $\}$
- $\operatorname{id}_{A} \in \operatorname{hom}(A, A)$
- $f=(A, \alpha, B), g=(B, \beta, C): f g=(A, \beta \circ \alpha, C)$

Four constants:

- $\mathbf{E}_{1} \in O^{\mathcal{C D}}: V\left(\mathbf{E}_{1}\right)=\{1\}, E\left(\mathbf{E}_{1}\right)=\emptyset$,
- $\mathbf{I}_{2} \in O^{\mathcal{C D}}: V\left(\mathbf{I}_{2}\right)=\{1,2\}, E\left(\mathbf{E}_{1}\right)=\{(1,2)\}$,
- $\mathbf{f}_{1} \in \operatorname{hom}\left(E_{1}, \mathbf{I}_{2}\right): \mathbf{f}_{1}=\left(E_{1},\{1 \mapsto 1\}, \mathbf{I}_{2}\right)$,
- $f_{2} \in \operatorname{hom}\left(E_{1}, I_{2}\right): f_{2}=\left(E_{1},\{1 \mapsto 2\}, I_{2}\right)$.
$\mathcal{C D} \mathcal{D}^{\prime}=\mathcal{C D}+$ these four constants

The language $L_{\mathcal{C D}}$

$L_{\mathcal{C D}^{\prime}}$: first-order language of categories + the 4 constants

The language $L_{\mathcal{C D}}$

$L_{\mathcal{C D}^{\prime}}$: first-order language of categories + the 4 constants $L_{\mathcal{C D}^{\prime}}$ can capture isomorphism and embeddability of digraphs.

The language $L_{\mathcal{C D} \mathcal{D}^{\prime}}$

$L_{\mathcal{C D}}$: first-order language of categories + the 4 constants
$L_{\mathcal{C D}^{\prime}}$ can capture isomorphism and embeddability of digraphs.
A morphism $f \in C D(A, B)$ is

- injective iff: $\forall X \in O^{\mathcal{C D}} \forall g, h \in \operatorname{hom}(X, A): g f=h f \Leftrightarrow g=h$,
- surjective iff: $\forall X \in O^{\mathcal{C D}} \forall g, h \in \operatorname{hom}(B, X): \quad f g=f h \Leftrightarrow g=h$.

The language $L_{C D^{\prime}}$

$L_{\mathcal{C D}}$: first-order language of categories + the 4 constants
$L_{\mathcal{C D}^{\prime}}$ can capture isomorphism and embeddability of digraphs.
A morphism $f \in C D(A, B)$ is

- injective iff: $\forall X \in O^{\mathcal{C D}} \forall g, h \in \operatorname{hom}(X, A): g f=h f \Leftrightarrow g=h$,
- surjective iff: $\forall X \in O^{\mathcal{C D}} \forall g, h \in \operatorname{hom}(B, X): \quad f g=f h \Leftrightarrow g=h$.

This means all (n -ary) relations first-order definable in ($\mathcal{D} ; \leq$) are first-order definable in $\mathcal{C D}^{\prime}$ as well.

$L_{\mathcal{C D}^{\prime}}$ is strong

Within ($\mathcal{D} ; \leq, A$) the "inner structure" of the digraphs is unavailable by first order formulas.

$L_{\mathcal{C D}}{ }^{\prime}$ is strong

Within $(\mathcal{D} ; \leq, A)$ the "inner structure" of the digraphs is unavailable by first order formulas. Surprisingly, in $\mathcal{C D}^{\prime}$ we can capture the inner structure of digraphs, meaning the first-order language of digraphs can be expressed.

$L_{\mathcal{C D}}{ }^{\prime}$ is strong

Within $(\mathcal{D} ; \leq, A)$ the "inner structure" of the digraphs is unavailable by first order formulas. Surprisingly, in $\mathcal{C D}^{\prime}$ we can capture the inner structure of digraphs, meaning the first-order language of digraphs can be expressed.

For any $G \in O^{\mathcal{C D}}$,

G

$L_{\mathcal{C D}}{ }^{\prime}$ is strong

Within $(\mathcal{D} ; \leq, A)$ the "inner structure" of the digraphs is unavailable by first order formulas. Surprisingly, in $\mathcal{C D}^{\prime}$ we can capture the inner structure of digraphs, meaning the first-order language of digraphs can be expressed.

For any $G \in O^{\mathcal{C D}}$, hom $\left(\mathrm{E}_{1}, G\right)$ is naturally bijective with G.

G

$L_{\mathcal{C D}}{ }^{\prime}$ is strong

Within $(\mathcal{D} ; \leq, A)$ the "inner structure" of the digraphs is unavailable by first order formulas. Surprisingly, in $\mathcal{C D}^{\prime}$ we can capture the inner structure of digraphs, meaning the first-order language of digraphs can be expressed.

For any $G \in O^{\mathcal{C D}}$, $\operatorname{hom}\left(\mathrm{E}_{1}, G\right)$ is naturally bijective with G. Let

$$
f=\left(\mathbf{E}_{1},\{1 \mapsto x\}, G\right), \quad g=\left(\mathbf{E}_{1},\{1 \mapsto y\}, G\right) \quad(x, y \in V(G))
$$

$L_{\mathcal{C D}}{ }^{\prime}$ is strong

Within $(\mathcal{D} ; \leq, A)$ the "inner structure" of the digraphs is unavailable by first order formulas. Surprisingly, in $\mathcal{C D}^{\prime}$ we can capture the inner structure of digraphs, meaning the first-order language of digraphs can be expressed.

For any $G \in O^{\mathcal{C D}}$, hom $\left(\mathrm{E}_{1}, G\right)$ is naturally bijective with G. Let

$$
f=\left(\mathbf{E}_{1},\{1 \mapsto x\}, G\right), \quad g=\left(\mathbf{E}_{1},\{1 \mapsto y\}, G\right) \quad(x, y \in V(G)) .
$$

$(x, y) \in E(G)$ holds iff

$L_{\mathcal{C D}^{\prime}}$ is strong

Within $(\mathcal{D} ; \leq, A)$ the "inner structure" of the digraphs is unavailable by first order formulas. Surprisingly, in $\mathcal{C D}^{\prime}$ we can capture the inner structure of digraphs, meaning the first-order language of digraphs can be expressed.

For any $G \in O^{\mathcal{C D}}$, hom $\left(\mathrm{E}_{1}, G\right)$ is naturally bijective with G. Let

$$
f=\left(\mathbf{E}_{1},\{1 \mapsto x\}, G\right), \quad g=\left(\mathbf{E}_{1},\{1 \mapsto y\}, G\right) \quad(x, y \in V(G))
$$

$(x, y) \in E(G)$ holds iff

$L_{\mathcal{C D}^{\prime}}$ is strong

Within $(\mathcal{D} ; \leq, A)$ the "inner structure" of the digraphs is unavailable by first order formulas. Surprisingly, in $\mathcal{C D}^{\prime}$ we can capture the inner structure of digraphs, meaning the first-order language of digraphs can be expressed.

For any $G \in O^{\mathcal{C D}}$, hom $\left(\mathrm{E}_{1}, G\right)$ is naturally bijective with G. Let

$$
f=\left(\mathbf{E}_{1},\{1 \mapsto x\}, G\right), \quad g=\left(\mathbf{E}_{1},\{1 \mapsto y\}, G\right) \quad(x, y \in V(G)) .
$$

$(x, y) \in E(G)$ holds iff

$L_{\mathcal{C D}}{ }^{\prime}$ is strong

Within $(\mathcal{D} ; \leq, A)$ the "inner structure" of the digraphs is unavailable by first order formulas. Surprisingly, in $\mathcal{C D}^{\prime}$ we can capture the inner structure of digraphs, meaning the first-order language of digraphs can be expressed.

For any $G \in O^{\mathcal{C D}}$, hom $\left(\mathrm{E}_{1}, G\right)$ is naturally bijective with G. Let

$$
f=\left(\mathbf{E}_{1},\{1 \mapsto x\}, G\right), \quad g=\left(\mathbf{E}_{1},\{1 \mapsto y\}, G\right) \quad(x, y \in V(G))
$$

$(x, y) \in E(G)$ holds iff

$$
\exists h \in \operatorname{hom}\left(\mathbf{I}_{2}, G\right): \mathbf{f}_{1} h=f, \mathbf{f}_{2} h=g .
$$

$L_{\mathcal{C D}}$, is even stronger

$L_{\mathcal{C D}}{ }^{\prime}$ is even stronger

Example.

$L_{\mathcal{C D}}{ }^{\prime}$ is even stronger

Example. Let B and C the digraphs shown below.

$L_{\mathcal{C D}}{ }^{\prime}$ is even stronger

Example. Let B and C the digraphs shown below. Let us consider the following (heterogeneous) relation:

$$
R=\left\{\left(b_{1}, c_{2}\right),\left(b_{2}, c_{3}\right),\left(b_{1}, c_{1}\right)\right\} \subseteq B \times C .
$$

$L_{\mathcal{C D}}$ is even stronger

Example. Let B and C the digraphs shown below. Let us consider the following (heterogeneous) relation:

$$
R=\left\{\left(b_{1}, c_{2}\right),\left(b_{2}, c_{3}\right),\left(b_{1}, c_{1}\right)\right\} \subseteq B \times C
$$

We repsesent R in the following way:

$$
E_{3}
$$

$L_{\mathcal{C D}}{ }^{\prime}$ is even stronger

Example. Let B and C the digraphs shown below. Let us consider the following (heterogeneous) relation:

$$
R=\left\{\left(b_{1}, c_{2}\right),\left(b_{2}, c_{3}\right),\left(b_{1}, c_{1}\right)\right\} \subseteq B \times C
$$

We repsesent R in the following way:

$L_{\mathcal{C D}}$ is even stronger

Example. Let B and C the digraphs shown below. Let us consider the following (heterogeneous) relation:

$$
R=\left\{\left(b_{1}, c_{2}\right),\left(b_{2}, c_{3}\right),\left(b_{1}, c_{1}\right)\right\} \subseteq B \times C
$$

We repsesent R in the following way:

$L_{\mathcal{C D}}$ is even stronger

Example. Let B and C the digraphs shown below. Let us consider the following (heterogeneous) relation:

$$
R=\left\{\left(b_{1}, c_{2}\right),\left(b_{2}, c_{3}\right),\left(b_{1}, c_{1}\right)\right\} \subseteq B \times C
$$

We repsesent R in the following way:

$L_{\mathcal{C D}}$ is even stronger

Example. Let B and C the digraphs shown below. Let us consider the following (heterogeneous) relation:

$$
R=\left\{\left(b_{1}, c_{2}\right),\left(b_{2}, c_{3}\right),\left(b_{1}, c_{1}\right)\right\} \subseteq B \times C
$$

We repsesent R in the following way:

So R can be represented as $\left(E_{3}, p_{1}, p_{2}\right)$, where p_{1}, p_{2} are two morphisms.

$L_{\mathcal{C D}}{ }^{\prime}$ is even stronger

Example. Let B and C the digraphs shown below. Let us consider the following (heterogeneous) relation:

$$
R=\left\{\left(b_{1}, c_{2}\right),\left(b_{2}, c_{3}\right),\left(b_{1}, c_{1}\right)\right\} \subseteq B \times C
$$

We repsesent R in the following way:

So R can be represented as $\left(E_{3}, p_{1}, p_{2}\right)$, where p_{1}, p_{2} are two morphisms.

$L_{\mathcal{C D}}$ is even stronger

Example. Let B and C the digraphs shown below. Let us consider the following (heterogeneous) relation:

$$
R=\left\{\left(b_{1}, c_{2}\right),\left(b_{2}, c_{3}\right),\left(b_{1}, c_{1}\right)\right\} \subseteq B \times C
$$

We repsesent R in the following way:

So R can be represented as $\left(E_{3}, p_{1}, p_{2}\right)$, where p_{1}, p_{2} are two morphisms.

$L_{\mathcal{C D}}{ }^{\prime}$ is even stronger

Example. Let B and C the digraphs shown below. Let us consider the following (heterogeneous) relation:

$$
R=\left\{\left(b_{1}, c_{2}\right),\left(b_{2}, c_{3}\right),\left(b_{1}, c_{1}\right)\right\} \subseteq B \times C
$$

We repsesent R in the following way:

So R can be represented as $\left(E_{3}, p_{1}, p_{2}\right)$, where p_{1}, p_{2} are two morphisms. $L_{\mathcal{C D}^{\prime}}$ is even stronger than the second-order language of digraphs.

A characterisation

We have already seen that (n-ary) relations first-order definable in ($\mathcal{D} ; \leq$) are first-order definable in $\mathcal{C D}^{\prime}$ as well.

A characterisation

We have already seen that (n-ary) relations first-order definable in ($\mathcal{D} ; \leq$) are first-order definable in $\mathcal{C D}{ }^{\prime}$ as well. The converse is nontrivial, but true:

A characterisation

We have already seen that (n-ary) relations first-order definable in ($\mathcal{D} ; \leq$) are first-order definable in $\mathcal{C D}{ }^{\prime}$ as well. The converse is nontrivial, but true:

Theorem (K, 2018+)

The first-order language of $(\mathcal{D} ; \leq, A)$ is "as strong as" $L_{\mathcal{C D}^{\prime}}$.

A characterisation

We have already seen that (n-ary) relations first-order definable in ($\mathcal{D} ; \leq$) are first-order definable in $\mathcal{C D}^{\prime}$ as well. The converse is nontrivial, but true:

Theorem (K, 2018+)

The first-order language of $(\mathcal{D} ; \leq, A)$ is "as strong as" $L_{\mathcal{C D}^{\prime}}$.

So far we have roughly discussed:
(1) Á. Kunos, Definability in the embeddability ordering of finite directed graphs. Order 32/1, 2015, 117-133.
(2) Á. Kunos, Definability in the embeddability ordering of finite directed graphs, II., submitted to Order

The substructure ordering: ($\mathcal{D} ; \sqsubseteq$)

A completely new partial order.

The substructure ordering: ($\mathcal{D} ; \sqsubseteq$)

A completely new partial order.
Even the automorhphism groups differ.

The substructure ordering: ($\mathcal{D} ; \sqsubseteq$)

A completely new partial order.
Even the automorhphism groups differ.
I conjectured \mathbb{Z}_{2}^{2}, induced by

The substructure ordering: (D; \sqsubseteq)

A completely new partial order.
Even the automorhphism groups differ.
I conjectured \mathbb{Z}_{2}^{2}, induced by taking transposition and

The substructure ordering: (D; \sqsubseteq)

A completely new partial order.
Even the automorhphism groups differ.
I conjectured \mathbb{Z}_{2}^{2}, induced by taking transposition and complement of digraphs,

The substructure ordering: (D; \sqsubseteq)

A completely new partial order.
Even the automorhphism groups differ.
I conjectured \mathbb{Z}_{2}^{2}, induced by taking transposition and complement of digraphs, but I found the

The substructure ordering: (D; \sqsubseteq)

A completely new partial order.
Even the automorhphism groups differ.
I conjectured \mathbb{Z}_{2}^{2}, induced by taking transposition and complement of digraphs, but I found the "loop-exchange automorphism" as well.

The substructure ordering: ($\mathcal{D} ; \sqsubseteq$)

A completely new partial order.
Even the automorhphism groups differ.
I conjectured \mathbb{Z}_{2}^{2}, induced by taking transposition and complement of digraphs, but I found the "loop-exchange automorphism" as well. Is the automorphism group isomorphic to \mathbb{Z}_{2}^{3} ?

The substructure ordering: ($\mathcal{D} ; \sqsubseteq$)

A completely new partial order.
Even the automorhphism groups differ.
I conjectured \mathbb{Z}_{2}^{2}, induced by taking transposition and complement of digraphs, but I found the "loop-exchange automorphism" as well. Is the automorphism group isomorphic to \mathbb{Z}_{2}^{3} ?

Two approaches:

- build from scratch again
- try to use the existing result(s)

Board time

Thank you for your attention!

